Supplementary Information

Halogen bonding and $\pi-\pi$ interactions in the solid-state structure of a butadiynylene-linked bis(iodoperfluoroarene)

I. Synthesis

In a flame-dried flask equipped with a drying tube, 0.09 g of 1-ethynyl-2-iodo-3,4,5,6-tetrafluorobenzene $3(0.30 \mathrm{mmol})$ were dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ and pyridine $(7 \mathrm{~mL}) .0 .42 \mathrm{~g}$ of CuCl ($4.24 \mathrm{mmol}, 14 \mathrm{eq}$.) and 0.64 mL of tetramethylethylenediamine ($4.24 \mathrm{mmol}, 14 \mathrm{eq}$.) were added and the reaction mixture was stirred at room temperature for 45 h . The reaction mixture was washed with water $(3 \times 30 \mathrm{~mL})$, dried over MgSO_{4} and filtered. Removal of the solvent yielded 67.0 mg of the desired product 2 ($0.11 \mathrm{mmol}, 75 \%$) as a brown solid.

The alternative synthetic route proceeds in the following fashion: in a flame-dried flask, 177 mg of 1-iodo-2-[(trimethylsilyl)ethynyl]-3,4,5,6-tetrafluorobenzene 1 ($1 \mathrm{eq} ., 0.48 \mathrm{mmol}$) and 124 mg of CuCl (0.48 equiv, 1.25 mmol) were dissolved in 0.5 mL of DMF and stirred at $80^{\circ} \mathrm{C}$ for 6 h . After the removal of the solvent, the residue was subjected to flash column chromatography (silica gel, pentane), yielding 48 mg of product 2. ($0.19 \mathrm{mmol}, 30 \%$).
${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -113.5 (m, 2F), -129.0 (m, 2F), -148.6 (m, 2F), -153.4 (m, 2F). FTIR (powder): 1618 (s), 1491 (s), 1460 (s), 948 (s), $797(\mathrm{~s}) \mathrm{cm}^{-1}$. HRMS (EI): m/z $=697.797$, calculated for $\mathrm{C}_{16} \mathrm{~F}_{8} \mathrm{I}_{2}$: 697.796.

II. Single Crystal X-Ray Structure Determination of Compound 2

General:

Data were collected on an X-ray single crystal diffractometer equipped with a CCD detector (Bruker Kappa APEX II ULTRA), a rotating anode (Bruker AXS, FR591) with MoK ${ }_{\text {radiation }}(\boldsymbol{\lambda}=0.71073 \AA$), and a graphite monochromator by using the SMART software package. [1] The measurements were performed on a single crystal coated with perfluorinated ether. The crystal was fixed on the top of a glass fiber and transferred to the diffractometer. The crystal was frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected
for Lorenz and polarization effects, scan speed, and background using SAINT. [2] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS. [2] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using WinGX [7] based on SIR-92. [3] If not mentioned otherwise, non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix leastsquares refinements were carried out by minimizing $\Sigma w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$ with SHELXL-97 [5] weighting scheme. Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the nonhydrogen atoms were taken from International Tables for Crystallography. [4] Images of the crystal structures were generated by PLATON. [6]

Figure S1 - Ortep drawing of compound 2 with 50% ellipsoids. [6]

Operator:
Molecular Formula:
Crystal Color / Shape
Crystal Size
Molecular Weight:
F_{000} :
Systematic Absences:
Space Group:
Cell Constants:

Temperature:
*** Herdtweck ***
$\mathrm{C}_{16} \mathrm{~F}_{8} \mathrm{I}_{2}$
Colorless fragment
Approximate size of crystal fragment used for data collection:
$0.05 \times 0.18 \times 0.53 \mathrm{~mm}$
597.96 a.m.u.

548
h01: $1 \neq 2 \mathrm{n} ; 0 \mathrm{k} 0$: $\mathrm{k} \neq 2 \mathrm{n}$
Monoclinic $\quad P 2 / c \quad$ (I.T.-No.: 14)
Least-squares refinement of 7288 reflections with the programs "APEX suite" and "SAINT"
[1,2]; theta range $1.88^{\circ}<\theta<25.32^{\circ} ; \operatorname{Mo}(\mathrm{K} \bar{\alpha}) ; \lambda=71.073 \mathrm{pm}$
$a=\quad 1182.60(5) \mathrm{pm}$
$b=\quad 507.79(2) \mathrm{pm} \quad \beta=\quad 113.431(2)^{\circ}$
$c=\quad 1447.17(6) \mathrm{pm}$
$V=797.38(6) \cdot 10^{6} \mathrm{pm}^{3} ; Z=2 ; D_{\text {calc }}=2.490 \mathrm{~g} \mathrm{~cm}^{-3} ;$ Mos. $=0.71$
Kappa APEX II (Area Diffraction System; BRUKER AXS); rotating anode; graphite monochromator; $50 \mathrm{kV} ; 40 \mathrm{~mA} ; \lambda=71.073 \mathrm{pm} ; \operatorname{Mo}(\mathrm{K} \bar{\alpha})$
$(-150 \pm 1){ }^{\circ} \mathrm{C} ; \quad(123 \pm 1) \mathrm{K}$

Measurement Range:
Measurement Time: Measurement Mode:

LP - Correction: Intensity Correction Absorption Correction:

Reflection Data:

Solution:
Refinement Parameters:
Atomic Form Factors:
Extinction Correction:
Weighting Scheme:

Shift/Err:
Resid. Electron Density:
R1:
$\left[F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right) ; \quad \mathrm{N}=1314\right]:$
[all reflctns; $\quad \mathrm{N}=1371$]:
wR2:
[$\left.F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right) ; \quad \mathrm{N}=1314\right]$:
[all reflctns; $\quad \mathrm{N}=1371]$:
Goodness of fit:
Remarks:
$1.88^{\circ}<\theta<25.32^{\circ} ;$ h: $-14 / 13$, k: $-6 / 6,1:-15 / 16$
$2 \times 5 \mathrm{~s}$ per film
measured: 5 runs; 2016 films / scaled: 5 runs; 2016 films
$\varphi-$ and ω-movement; Increment: $\Delta \varphi / \Delta \omega=0.50^{\circ} ; \mathrm{dx}=50.0 \mathrm{~mm}$
Yes [2]
No/Yes; during scaling [2]
Multi-scan; during scaling; $\mu=4.027 \mathrm{~mm}^{-1}$ [2]
Correction Factors: $\quad \mathrm{T}_{\text {min }}=0.5437 \quad \mathrm{~T}_{\text {max }}=0.7452$
$9550 \quad$ reflections were integrated and scaled
582 reflections systematic absent and rejected
8968 reflections to be merged
1371 independent reflections
$0.028 \quad \mathrm{R}_{\mathrm{int}}:\left(\right.$ basis $\left.F_{o}{ }^{2}\right)$
1371 independent reflections (all) were used in refinements
1314 independent reflections with $I_{o}>2 \sigma\left(I_{o}\right)$
93.7 completeness of the data set

118 parameter full-matrix refinement
11.6 reflections per parameter

Direct Methods [3]; Difference Fourier syntheses
In the asymmetric unit:
13 Non-hydrogen atoms with anisotropic displacement parameters
For neutral atoms and anomalous dispersion [4]
no
$w^{-1}=\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(\mathrm{a} * \mathrm{P})^{2}+\mathrm{b} * \mathrm{P}$
with a: 0.0204; b: 2.2924; P: [Maximum(0 or $F_{\mathrm{o}}{ }^{2}$) $\left.+2 * F_{\mathrm{c}}{ }^{2}\right] / 3$
Less than 0.001 in the last cycle of refinement:
$+1.07 \mathrm{e}_{0} ; / / \AA^{3} ;-0.69 \mathrm{e}_{0} ; / \AA^{3}$
$\Sigma\left(\left\|F_{\mathrm{o}} \mathrm{l}-\mid F_{\mathrm{c}}\right\|\right) / \Sigma\left|F_{\mathrm{o}}\right|$

$$
=0.0223
$$

$\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2}$

	$=0.0545$
$\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} /(\mathrm{NO}-\mathrm{NV})\right]^{1 / 2}$	
	$=0.0550$
	$=1.087$

Refinement expression $\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}$

III. Single Crystal X-Ray Structure Determination of Compound 6

Data were collected on a Nonius Kappa-CCD diffractometer using monochromated Mo-K α radiation and were measured using a combination of ϕ scans and ω scans with κ offsets, to fill the Ewald sphere. The data were processed using the Denzo-SMN package [8]. Absorption corrections were carried out using SORTAV [9]. The structure was solved and refined using SHELXTL V6.1 [10] for full-matrix leastsquares refinement that was based on F^{2}. All H atoms were included in calculated positions and allowed to refine in riding-motion approximation with $\mathrm{U} \sim$ iso \sim tied to the carrier atom.

Figure S2 - Ortep drawing of compound 2 with 50% ellipsoids. [6]

Empirical formula
Formula weight
Temperature
Wavelength

C32 H36 F8 I3 N
967.32

150(2) K
0.71073 A

Crystal system	Monoclinic
Space group	C c
Unit cell dimensions	$a=13.7911(4) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=30.7832(10) \AA$ 发 $\quad \beta=96.2920(19)^{\circ}$.
	$\mathrm{c}=8.3658(1) \AA \quad \gamma=90^{\circ}$.
Volume	3530.17(16) \AA^{3}
Z	4
Density (calculated)	$1.820 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.721 \mathrm{~mm}^{-1}$
F(000)	1864
Crystal size	$0.20 \times 0.14 \times 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	2.65 to 27.49°.
Index ranges	$-17<=\mathrm{h}<=17,-34<=\mathrm{k}<=39,-10<=1<=8$
Reflections collected	12445
Independent reflections	$6063[\mathrm{R}(\mathrm{int})=0.0384]$
Completeness to theta $=27.49^{\circ}$	94.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.768 and 0.677
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6063 / 2 / 401
Goodness-of-fit on F^{2}	1.069
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0433, \mathrm{wR} 2=0.0965$
R indices (all data)	$\mathrm{R} 1=0.0553, \mathrm{wR} 2=0.1060$
Absolute structure parameter	0.51(3)
Largest diff. peak and hole	1.131 and -1.462 e. \AA^{-3}

IV. Computational Details.

Calculations were carried out using the Gaussian 09 software package [11] on a Linux workstation equipped with two quad-core AMD Shanghai processors. The energy dependence on the I---I ---I halogen bond angle (in the $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{I}---\mathrm{I}^{-}--\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{I}$ complex) was estimated by constraining the $\mathrm{I}--\mathrm{I}^{-}---\mathrm{I}$ bond angle and optimizing the geometry at each iteration using the B3LYP functional. The $6-31 \mathrm{G}(\mathrm{d})$ basis sets were used for all atoms except iodine, for which the double- ζ LANL2DZ basis set and effective core potential (ECP) were used,[12] augmented by polarization functions of d symmetry and diffuse functions of p symmetry.[13] The LANL2DZdp basis set was downloaded from the EMSL Basis Set Exchange (https://bse.pnl.gov/bse/portal).[14] The I---I ${ }^{-}---I$ angle was incremented (and constrained) systematically by 10° from $60-170^{\circ}$. Stationary points were obtained at some iterations on the basis of negligible forces (Maximum force ≤ 0.000009 and RMS force ≤ 0.000002).

V. References.

[1] APEX suite of crystallographic software. APEX 2 Version 2008.4. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
[2] SAINT, Version 7.56a and SADABS Version 2008/1. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
[3] Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli M. "SIR92", J. Appl. Cryst. 1994, 27, 435-436.
[4] International Tables for Crystallography, Vol. C, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199), Wilson, A. J. C., Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
[5] Sheldrick, G. M. "SHELXL-97", University of Göttingen, Göttingen, Germany, (1998).
[6] Spek, A. L. "PLATON", A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, (2010).
[7] L. J. Farrugia, "WinGX (Version 1.70.01 January 2005) ", J. Appl. Cryst. 1999, 32, 837-838.
[8] Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter \& R. M. Sweet pp. 307-326. London: Academic press.
[9] Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
[10] Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
[11] Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
[12] Hay, J. P.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283.
[13] Check, C. E.; Faust, T. O.; Bailey, J. M.; Wright, B. J.; Gilbert, T. M.; Sunderlin, L. S. J. Phys. Chem. A 2001, 105, 8111-8116.
[14] Schuchardt, K. L.; Didier, B. T.; Eisethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. J. Chem. Inf. Model. 2007, 47, 1045-1052.

