Novel (4,8)-connected scu Framework Constructed by Tetrakis(4-benzoic acid)ethylene

Hao-Ling Sun^a*, Rui Jiang^a, Zongsheng Li^b, Yong Qiang Dong^a and Miao Du^c*

^a Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, P. R. China E-mail: <u>haolingsun@bnu.edu.cn;</u>

^b College of Safety and Enviroment Engineering, Capital University of Economics and Business, Beijing 100070, People's Republic of China

^c College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, P. R. China.

Supporting Information

Experimental Section

All the starting materials were commercially available reagents for analytical grade and used without further purification.

Tetrakis(4-benzoic acid)ethylene-0.5H₂O (H₄tbe-0.5H₂O): To a solution of tetrakis(4-bromophenyl)ethylene (8.38g, 12.9mmol) in 300 mL of dry THF, n-butyllithium (2.5 M in hexane, 26 ml, 65.0 mol) was added dropwise at -78 °C under N₂. After addition, the mixture was stirred for another 2 h at -78 °C, and solid carbon dioxide (100 g) was added in portions. The mixture was warmed to room temperature and stirred overnight. The solution was adjusted to pH = 1 with conc. HCl (15 mL) and exacted by mixed solvent of ether and THF to give white solid. A mixture of the white solid, conc. H₂SO₄ (8.0 mL) and ethanol (250 mL) in a 500 mL three-necked flask was stirred at reflux for 20 h. The resulting solution was concentrated under reduced pressure. The residue was purified by silica gel chromatography to yield 2.62 g (38.6%) of tetraester a white solid. A mixture of

tetraester, sodium hydroxide (3.43 g), ethanol (150 mL) and H₂O (150 mL) in a 500 mL three-necked flask was stirred at reflux for 20 h. The resulting solution was concentrated under reduced pressure, and the residue was acidified with conc. HCl at 0°C. The precipitate was collected and dried to yield 2.01 g (94%) of tetrakis(4-benzoic acid)ethylene·0.5H₂O as a white solid. Anal. Calcd for $C_{30}H_{25}O_{10.5}$ (%):C, 65.09; H, 4.55. Found (%):C, 65.31; H, 4.35. Selected IR (KBr, cm⁻¹): 3444.4(m), 3175.6(w), 1693.1(s), 1605.8(s), 1410.3(m), 1248.3(m), 1177.8(m), 1105.0(m), 748.6(m).

Table S1 Selected bond lengths (\AA) and angles (deg) for 1.

Compound 1					
Co1-O4	2.099(2)	Co1-O3	2.108(17)	Co1-O2b	2.087(2)
Co1-O2c	2.087(2)	Co1-O1	2.101(2)	Co1-O1a	2.101(2)
Co1-O3'	2.161(17)	Co1-O3'a	2.161(17)		
O4-Co1-O3	174.7(5)	O4-Co1-O2b	87.5(3)	O3-Co1-O2b	96.1(3)
O4-Co1-O2c	87.5(3)	O3-Co1-O2c	96.1(3)	O2b-Co1-O2c	90.4(4)
O4-Co1-O1a	85.7(3)	O3-Co1-O1a	90.7(3)	O2b-Co1-O1a	173.2(3)
O2c-Co1-O1a	88.4(3)	O4-Co1-O1	85.7(3)	O3-Co1-O1	90.7(3)
O2b-Co1-O1	88.4(3)	O2d-Co1-O1	173.2(3)	O1a-Co1-O1	92.0(4)

Symmetry code : a: x, y, -z+2 b: x-1/2, -y+3/2, z c: x-1/2, -y+3/2, -z+2