Supplementary Information Material (ESI)

CrystEngComm

Themed issue on Halogen bond: From self-assembly to materials and biomolecules

Linear Free Energy Relationships in Halogen Bonds

Ibon Alkorta,* Goar Sánchez-Sanz and José Elguero

	Hal = I		Hal	= Br	
	NH ₃	NH ₃	NCH	CNH	NH ₃
Substituent	(para)	(para)	(para)	(para)	(meta)
NO ₂	3.054	3.064	3.393	3.445	3.059
CN	3.068	3.077	3.404	3.455	3.069
CF ₃	3.088	3.093	3.417	3.470	3.088
COCH ₃	3.112	3.110	3.429	3.485	3.117
CO ₂ H	3.106	3.106	3.426	3.482	3.110
СНО	3.093	3.094	3.418	3.476	3.097
Cl	3.114	3.115	3.436	3.493	3.106
Br	3.111	3.113	3.434	3.49	3.101
SH	3.140	3.138	3.454	3.518	3.148
F	3.121	3.121	3.441	3.500	3.108
Н	3.158	3.150	3.464	3.533	3.150
SCH ₃	3.157	3.150	3.467	3.524	3.130
CH ₃	3.168	3.160	3.472	3.543	3.160
OCH ₃	3.170	3.162	3.477	3.546	3.157
OH	3.158	3.153	3.467	3.535	3.141
NH ₂	3.189	3.175	3.487	3.560	3.169
N(CH ₃) ₂	3.210	3.186	3.497	3.571	3.184

Table S1 I···X and Br···X distance in Å in the complexes between the *p*- and *m*-substituted halobenzenes and NH₃ (X = N), NCH (X = N) and CNH (X = C)

Table S2. Interaction energies (all values in kJ mol⁻¹) of the complexes between the *p*-and *m*-substituted halobenzenes and NH₃, NCH and CNH.

		Hal	= I	Hal = Br										
		N	H_3	N	H_3	NC	H	CNH						
Subs.	Position	Ei	Ei (cp)	Ei	Ei (cp)	Ei	Ei (cp)	Ei	Ei (cp)					
NO ₂	р	-22.58	-19.30	-16.09	-13.03	-7.30	-6.46	-7.39	-6.91					
CN	р	-21.62	-18.37	-15.20	-12.20	-6.81	-5.92	-6.84	-6.34					
CF ₃	р	-20.34	-17.15	-14.07	-11.13	-6.01	-5.12	-6.01	-5.50					
COCH ₃	р	-18.96	-15.86	-13.16	-10.30	-5.37	-4.57	-5.33	-4.92					
CO ₂ H	р	-19.28	-16.17	-13.31	-10.43	-5.39	-4.57	-5.36	-4.93					
СНО	p	-19.73	-16.62	-14.10	-11.22	-6.18	-5.32	-6.16	-5.71					
Cl	р	-18.60	-15.48	-12.48	-9.64	-4.93	-4.02	-4.89	-4.38					
Br	р	-18.76	-15.63	-12.63	-9.78	-5.02	-4.11	-4.98	-4.47					
SH	р	-17.11	-14.04	-11.17	-8.42	-4.03	-3.15	-3.96	-3.47					
F	p	-18.20	-15.07	-12.09	-9.24	-4.67	-3.76	-4.64	-4.11					
Н	р	-16.27	-13.30	-10.56	-7.88	-3.63 -2.75		-3.54	-3.05					

SCH ₃	р	-15.94	-13.00	-10.33	-7.67	-3.45	-2.64	-3.31	-2.88
CH ₃	р	-15.66	-12.70	-9.95	-7.31	-3.19	-2.35	-3.08	-2.64
OCH ₃	р	-15.03	-12.09	-9.69	-7.06	-3.09	-2.32	-2.98	-2.60
OH	р	-16.14	-13.10	-10.26	-7.55	-3.42	-2.53	-3.33	-2.84
NH ₂	р	-14.57	-11.60	-8.85	-6.24	-2.45	-1.60	-2.34	-1.87
N(CH ₃) ₂	р	-13.81	-10.92	-8.18	-5.61	-1.96	-1.11	-1.81	-1.38
NO ₂	т			-15.71	-12.64				
CN	т			-15.21	-12.24				
CF ₃	т			-13.92	-10.94				
COCH ₃	т			-12.52	-9.68				
CO ₂ H	т			-12.74	-9.86				
СНО	т			-13.48	-10.65				
Cl	т			-12.83	-10.01				
Br	т			-12.80	-9.96				
SH	т			-11.59	-8.87				
F	т			-12.64	-9.87				
Н	т			-10.56	-7.88				
SCH ₃	m			-10.68	-8.00				
CH ₃	m			-9.81	-7.28				
OCH ₃	т			-10.23	-7.58				
OH	m			-10.95	-8.33				
NH ₂	т			-9.22	-6.74				
N(CH ₃) ₂	m			-8.51	-5.95				

Table S3. Calculated properties of the isolated bromobenzenes

		para			meta	
Х	C–Br	Br radius	σ hole	C–Br	Br radius	σ
hole						
NO_2	1.916	2.021	0.0347	1.920	2.020	0.0319
CN	1.919	2.023	0.0323	1.921	2.022	0.0308
CF_3	1.921	2.025	0.0285	1.923	2.025	0.0273
$COCH_3$	1.921	2.028	0.0256	1.928	2.030	0.0246
CO_2H	1.921	2.028	0.0257	1.926	2.029	0.0236
СНО	1.920	2.026	0.0288	1.926	2.027	0.0271
Cl	1.924	2.028	0.0234	1.924	2.028	0.0237
Br	1.924	2.028	0.0238	1.925	2.027	0.0239
SH	1.926	2.031	0.0192	1.928	2.032	0.0206
F	1.925	2.029	0.0224	1.924	2.028	0.0233
Н	1.929	2.034	0.0174	1.929	2.034	0.0174
SCH ₃	1.927	2.033	0.0167	1.930	2.035	0.0181

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013

CH ₃	1.930	2.035	0.0154	1.930	2.037	0.0155
OCH ₃	1.928	2.035	0.0146	1.931	2.036	0.0166
OH	1.928	2.033	0.0164	1.928	2.033	0.0192
NH_2	1.930	2.037	0.0116	1.931	2.037	0.0135
$N(CH_3)_2$	1.930	2.039	0.0092	1.935	2.041	0.0106

Table S4. Br...N distance (Å) and interaction energies in the complexes between the 4-substituted 1-bromobicyclo[2.2.2]octanes and NH₃. In addition, the C-Br bond distance (Å), Br vdW radius (Å) and the MEP values (au) in the vdW surface along the C-Br bond of the isolated bromo derivatives are included.

Х	E _i E _i (Br⋯N	C–Br	Br radius	MEP-surface		
NO ₂	-7.97	-5.42	3.197	2.021	2.063	-0.0022		
CN	-7.49	-4.96	3.202	2.024	2.065	0.0050		
CF ₃	-6.85	-4.39	3.214	2.025	2.067	0.0100		
COCH ₃	-5.70	-3.30	3.228	2.028	2.071	0.0067		
CO ₂ H	-5.71	-3.31	3.228	2.029	2.071	0.0063		
СНО	-6.32	-3.92	3.222	2.027	2.070	0.0029		
Cl	-6.64	-4.17	3.213	2.025	2.068	0.0026		
Br	-6.91	-4.46	3.211	2.025	2.067	0.0109		
SH	-5.83	-3.43	3.226	2.029	2.071	-0.0014		
F	-6.65	-4.22	3.220	2.025	2.067	0.0033		
Н	-4.19	-1.92	3.250	2.034	2.077	0.0056		
SCH ₃	-5.47	-3.09	3.233	2.030	2.073	-0.0004		
CH ₃	-4.44	-2.12	3.248	2.033	2.076	0.0067		
OCH ₃	-5.19	-2.85	3.237	2.030	2.073	0.0008		
OH	-5.48	-3.09	3.231	2.029	2.071	0.0020		
NH_2	-4.82	-2.48	3.240	2.031	2.074	-0.0026		
N(CH ₃) ₂	-4.55	-2.28	3.248	2.031	2.075	0.0016		

Table S5. Corrected interaction energy $(kJ \text{ mol}^{-1})$ and $Br \cdots N$ distance (Å) in the complexes between the 3- and 4-substituted pyridines and BrCl and BrF

		Ei (d	cp)		BrN distance					
	3-subst. pyridines		4-subst. pyridines		3-subst.	pyridines	4-subst. pyridines			
	FBr	ClBr	FBr	ClBr	FBr	ClBr	FBr	ClBr		
NO_2	-73.75	-47.1	-76.63	-49.17	2.304	2.437	2.284	2.420		
CN	-75.55	-48.36	-78.86	-51.13	2.285	2.402	2.281	2.412		
CF ₃	-79.94	-52.4	-81.24	-53.33	2.29	2.413	2.282	2.407		

COCH ₃	-84.98	-56.48	-86.59	-57.6	2.289	2.405	2.27	2.385
$\rm CO_2 H$	-84.45	-56.14	-85.58	-56.58	2.285	2.402	2.271	2.391
СНО	-81.18	-53.34	-83.41	-54.72	2.286	2.405	2.273	2.397
Cl	-82.94	-54.95	-85.51	-57.17	2.302	2.434	2.279	2.394
Br	-82.31	-54.76	-85.23	-56.9	2.287	2.404	2.279	2.394
SH	-88.45	-59.68	-91.34	-62.26	2.276	2.391	2.268	2.372
F	-83.44	-55.52	-85.75	-57.53	2.268	2.37	2.282	2.396
Н	-91.78	-62.82	-91.78	-62.82	2.269	2.375	2.269	2.375
SCH ₃	-93.66	-64.4	-94.91	-65.29	2.266	2.375	2.264	2.363
CH ₃	-94.96	-65.67	-94.92	-65.57	2.293	2.412	2.263	2.363
OCH ₃	-95.05	-65.75	-96.41	-66.77	2.267	2.371	2.266	2.359
OH	-90.78	-61.95	-93.31	-64.19	2.276	2.379	2.269	2.369
NH_2	-97.25	-67.62	-101.01	-71.11	2.265	2.364	2.254	2.343
$N(CH_3)_2$	-102.45	-72.63	-105.47	-75.1	2.255	2.345	2.245	2.329

Table S6. MEP minima (au) associated to the lone pair of the pyridine

Х	4-X substituted	3-X substituted
NO ₂	-0.0728	-0.0721
CN	-0.0755	-0.0736
CF ₃	-0.0801	-0.0796
COCH ₃	-0.0863	-0.0879
CO ₂ H	-0.0857	-0.0854
СНО	-0.0816	-0.0826
Cl	-0.0872	-0.0839
Br	-0.0865	-0.0828
SH	-0.0942	-0.0888
F	-0.0884	-0.0860
Н	-0.0958	-0.0958
SCH ₃	-0.0986	-0.0937
CH ₃	-0.0994	-0.0984
OCH ₃	-0.1014	-0.0967
OH	-0.0981	-0.0926
NH ₂	-0.1069	-0.1013
N(CH ₃) ₂	-0.1115	-0.1054

Table S7. Ei(cp)energies (kJ mol⁻¹) of the complexes between the 4-substituted-1-bromobenzenes and 4-substituted pyridines calculated at the B97D/6-311+G(d) computational level. The substituents in the 1-bromobenzene derivatives are indicated in the columns and the substituents of the pyridines are indicated in each row.

	NO_2	CN	CF_3	COCH_3	CO_2H	CHO	Cl	Br	SH	F	Н	SCH_3	CH_3	OCH_3	OH	NH_{2}	NMe_2
NO_2	-11.05	-10.63	-10.02	-9.72	-9.84	-10.15	-9.47	-9.54	-8.90	-9.29	-8.63	-8.58	-8.37	-8.29	-8.51	-7.92	-7.65
CN	-11.40	-10.94	-10.41	-9.93	-10.05	-10.41	-9.64	-9.72	-9.01	-9.45	-8.71	-8.66	-8.43	-8.34	-8.58	-7.93	-7.70
CF ₃	-11.99	-11.46	-10.79	-10.24	-10.36	-10.79	-9.88	-9.97	-9.12	-9.87	-8.67	-8.71	-8.40	-8.31	-8.59	-7.86	-7.47
COCH ₃	-12.82	-12.18	-11.37	-10.66	-10.72	-11.40	-10.23	-10.34	-9.32	-9.95	-8.88	-8.89	-8.46	-8.32	-8.68	-7.68	-7.24
CO_2H	-12.78	-12.15	-11.22	-10.59	-10.86	-11.28	-10.22	-10.32	-9.30	-9.94	-8.87	-8.74	-8.45	-8.27	-8.67	-7.72	-7.26
CHO	-12.16	-11.60	-10.86	-10.32	-10.41	-10.87	-9.93	-10.03	-9.14	-9.69	-8.76	-8.70	-8.40	-8.16	-8.57	-7.76	-7.39
Cl	-12.87	-12.22	-11.39	-10.71	-10.82	-11.41	-10.24	-10.35	-9.31	-9.95	-8.87	-8.77	-8.44	-8.28	-8.66	-7.67	-7.33
Br	-12.80	-12.16	-11.36	-10.67	-10.78	-11.38	-10.21	-10.32	-9.29	-9.93	-8.97	-8.77	-8.43	-8.28	-8.65	-7.68	-7.21
SH	-13.92	-13.15	-12.12	-11.31	-11.43	-12.19	-10.74	-10.87	-9.49	-10.39	-9.08	-8.97	-8.57	-8.38	-8.82	-7.65	-7.08
F	-13.01	-12.34	-11.49	-10.80	-10.92	-11.53	-10.32	-10.44	-9.36	-10.03	-8.92	-8.82	-8.48	-8.32	-8.70	-7.69	-7.32
Н	-14.11	-13.31	-12.17	-11.42	-11.54	-12.32	-10.82	-10.96	-9.66	-10.46	-9.11	-8.99	-8.57	-8.37	-8.84	-7.60	-7.02
SCH ₃	-14.65	-13.80	-12.54	-11.60	-11.96	-12.75	-11.13	-11.27	-9.90	-10.74	-9.30	-9.13	-8.73	-8.54	-9.03	-7.77	-7.31
CH ₃	-14.70	-13.84	-12.71	-11.79	-11.90	-12.77	-11.12	-11.27	-9.86	-10.73	-9.26	-9.16	-8.56	-8.48	-8.97	-7.63	-7.01
OCH ₃	-15.00	-14.11	-12.85	-11.92	-12.17	-12.98	-11.28	-11.43	-9.97	-10.87	-9.35	-9.44	-8.75	-8.64	-9.05	-7.96	-7.30
OH	-14.44	-13.61	-12.50	-11.63	-11.75	-12.54	-11.00	-11.14	-9.70	-10.63	-9.21	-9.11	-8.66	-8.83	-8.91	-7.69	-7.28
NH_2	-15.93	-14.81	-13.61	-12.58	-12.66	-13.73	-11.64	-11.79	-10.30	-11.18	-9.60	-9.47	-8.79	-8.70	-9.27	-7.72	-6.98
NMe ₂	-16.79	-15.69	-14.23	-13.01	-13.24	-14.38	-12.20	-12.39	-10.62	-11.70	-9.86	-9.79	-9.11	-8.82	-9.46	-8.06	-7.18

List of equations.

 $\sigma_I = (0.996 \pm 0.038) \sigma_F$, n = 16, R² = 0.978

Dist (N…Br, 4X-1Br-Benzene:NH₃)= -0.92 \pm 0.04 + 1.17 \pm 0.01*Dist(N…Br, 4X-1Br-Benzene:NCH), R₂= 0.998, n=17

Dist (N…Br, 4X-1Br-Benzene:NH₃)= -0.18 \pm 0.07 + 0.94 \pm 0.02*Dist(C…Br, 4X-1Br-Benzene:CNH), R²= 0.993, n=17

Dist (N…Br, 4X-1Br-Benzene:NCH)= $0.63\pm0.06 + 0.80\pm0.02*$ Dist(C…Br, 4X-1Br-Benzene:CNH), R²= 0.992, n=17

Dist (N…Br, 4X-1Br-Benzene:NH₃)= $0.08\pm0.13 + 0.97\pm0.04$ *Dist(N…Br, 3X-1Br-Benzene:NH₃), R²= 0.97, n=17

Ei(cp) (4X-1Br-Benzene:NH₃)= $2.03\pm0.03 + 0.936\pm0.002$ *Ei (4X-1Br-Benzene:NH₃), R₂= 0.9999, n=17

Ei(cp) (4X-1Br-Benzene:NCH)= $0.83\pm0.03 + 0.994\pm0.006$ *Ei (4X-1Br-Benzene:NCH), R₂= 0.9992, n=17

Ei(cp) (4X-1Br-Benzene:CNH)= $0.42\pm0.03 + 0.991\pm0.006$ *Ei (4X-1Br-Benzene:CNH), R₂= 0.9993, n=17

Ei(cp) (3X-1Br-Benzene:NH₃)= $1.83\pm0.07 + 0.922\pm0.006$ *Ei (3X-1Br-Benzene:NH₃), R₂= 0.9993, n=17

- Eq. [6], Ei(cp) (4X-1Br-Benzene:NH₃)= $-197.\pm3.\pm60.1\pm0.9$ *Dist(N···Br, 4X-1Br-Benzene:NH₃), R₂= 0.996, n=17, SD=0.13
- Eq. [7], Ei(cp) (4X-1Br-Benzene:NH₃)= -8.6 ± 0.2 $-4.5\pm0.4*\sigma_p$ (X), R₂= 0.916, n=17, SD=0.63
- Eq. [8], Ei(cp) (4X-1Br-Benzene:NH₃)= $-7.9\pm0.2-6.0\pm0.4*\sigma_F(X) 5.7\pm0.3*\sigma_R(X)$, R₂= 0.982, n=16, SD=0.29
- Eq. [9], Ei(cp) (4X-1Br-Benzene:NH₃)= $-921.\pm54.-474\pm28*$ Dist(C-Br, 4X-1Br-Benzene), R₂= 0.950, n=17, SD=0.49.
- Eq. [10], Ei(cp) (4X-1Br-Benzene:NH₃)= -859 ± 30 . -418 ± 15 *Dist(Br-radius, 4X-1Br-Benzene), R₂= 0.982, n=17, SD=0.29.
- Eq. [11], Ei(cp) (4X-1Br-Benzene:NH₃)= -2.82 ± 0.05 $-292.\pm2.*$ σ hole(4X-1Br-Benzene), R₂= 0.999, n=17, SD=0.06
- Eq. [12], Ei(cp) $(3X-1Br-Benzene:NH_3) = -170.\pm 8. + 51.\pm 3.*Dist(N\cdots Br, 3X-1Br-Benzene:NH_3)$, R₂= 0.965, n=17, SD=0.36

- Eq. [13], Ei(cp) (3X-1Br-Benzene:NH₃)= $-7.4\pm0.2-7.4\pm0.2*\sigma_m$ (X), R₂= 0.942, n=17, SD=0.46
- Eq. [14], Ei(cp) (3X-1Br-Benzene:NH₃)= $-7.7\pm0.2-6.4\pm0.4*\sigma_F$ (X) $-4.2\pm0.3*\sigma_R$ (X), R₂= 0.974, n=16, SD=0.31
- Eq. [15], Ei(cp) $(3X-1Br-Benzene:NH_3) = -890\pm65 457\pm34*Dist(C-Br, 3X-1Br-Benzene), R_2 = 0.925, n=17, SD=0.53.$
- Eq. [16], Ei(cp) (3X-1Br-Benzene:NH₃)= $-670.\pm 20.-325.\pm 10.*$ Dist(Br-radius, 3X-1Br-Benzene), R₂= 0.986, n=17, SD=0.23.
- Eq. [17], Ei(cp) (3X-1Br-Benzene:NH₃)= $-2.5\pm0.2-312\pm7*\sigma$ hole(3X-1Br-Benzene), R₂= 0.991, n=17, SD=0.18
- Eq. [18], Ei(cp) $(3/4X-1Br-Benzene:NH_3) = -183.\pm 5.\pm 56.\pm 2.*Dist(N\cdots Br, 3/4X-1Br-Benzene:NH_3)$, R₂= 0.976, n=34, SD=0.31
- Eq. [19], Ei(cp) $(3/4X-1Br-Benzene:NH_3) = -8.3\pm0.1-5.0\pm0.4*\sigma_m/\sigma_p$ (X), R₂= 0.852, n=34, SD=0.77
- Eq. [20], Ei(cp) $(3/4X-1Br-Benzene:NH_3) = -7.8\pm0.1-6.2\pm0.3*\sigma_F(X) 5.0\pm0.3*\sigma_R(X)$, R₂= 0.975, n=32, SD=0.35
- Eq. [21], Ei(cp) $(3/4X-1Br-Benzene:NH_3) = -829\pm61.-426\pm32*Dist(C-Br, 3/4X-1Br-Benzene), R_2 = 0.850, n=34, SD=0.77.$
- Eq. [22], Ei(cp) $(3/4X-1Br-Benzene:NH_3) = -750\pm 26. 365\pm 13.*Dist(Br-radius, 3/4X-1Br-Benzene)$, R₂= 0.963, n=34, SD=0.38.
- Eq. [23], Ei(cp) (3X-1Br-Benzene:NH₃)= $-2.68\pm0.09-300\pm4*\sigma$ hole(3/4X-1Br-Benzene), R₂= 0.994, n=34, SD=0.15
- Eq. [24], Ei(cp) (3/4X-1Br-Benzene:NH₃/NCH/CNH)= $21\pm5-290\pm208^{\circ}\sigma$ hole(3/4X-1Br-Benzene) 0.028±0.006*PA(NH₃/NCH/CNH) -0.7±0.3*\sigma hole*PA, R₂= 0.927, n=68, SD=0.86
- Eq. [25], Ei(cp) (3/4X-1Br-Benzene:NH₃/NCH/CNH)= $4.7\pm0.2-117\pm7^{*}\sigma$ hole(3/4X-1Br-Benzene) 60±2*MEP minimum(NH₃/NCH/CNH) + 1470±70*\sigma hole*MEP, R₂= 0.998, n=68, SD=0.11
- Eq. [26], Ei(cp) (1-Bromo-4-X-bicyclo[2.2.2]octanes:NH₃)= 1.99±0.03.– 0.930±0.004* Ei(1-Bromo-4-X-bicyclo[2.2.2]octanes:NH₃), R₂= 0.9997, n=17, SD=0.02.
- Eq. [27], Ei(cp) (1-Bromo-4-X-bicyclo[2.2.2]octanes:NH₃)= $-2.1\pm0.1.-4.6\pm0.4*\sigma_F$ (X), R₂= 0.897, n=17, SD=0.34.
- Eq. [28], Ei(cp) (1-Bromo-4-X-bicyclo[2.2.2]octanes:NH₃)= $-210\pm7 + 64\pm2*Dist(N\cdots Br, 1-Bromo-4-X-bicyclo[2.2.2]octanes:NH₃), R₂= 0.984, n=17, SD=0.13$
- Eq. [29], Ei(cp) (1-Bromo-4-X-bicyclo[2.2.2]octanes:NH₃)= -588±27.+ 288±13*Dist(C-Br, 1-Bromo-4-X-bicyclo[2.2.2]octanes), R₂= 0.969, n=17, SD=0.19.

- Eq. [30], Ei(cp) (1-Bromo-4-X-bicyclo[2.2.2]octanes:NH₃)= $-527\pm18 + 253\pm9*$ Dist(Br-radius, 1-Bromo-4-X-bicyclo[2.2.2]octanes), R₂= 0.983, n=17, SD=0.14.
- Eq. [31], Ei(cp) (1-Bromo-4-X-bicyclo[2.2.2]octanes:NH₃)= $-2.63\pm0.03-254\pm5*MEP(1-Bromo-4-X-bicyclo[2.2.2]octanes)$, R₂= 0.993, n=17, SD=0.09.

Ei(cp) $(4X-1Br-Benzene:NH_3)=(-7.\pm1.) + 2.1\pm0.3* E_i(cp)$ (1-Bromo-4-X-bicyclo[2.2.2]octanes: NH₃), R² = 0.74, n=17.

- Eq. [32], E_i(cp) (4X-1Br-Benzene:NH₃) = $-(7.9\pm0.2) (4.1\pm1.5)\sigma_F (5.6\pm0.3)\sigma_R (1.7\pm1.4)\sigma_I$, R² = 0.986, n=17
- Eq. [33], E_i(cp) (1-Bromo-4-X-bicyclo[2.2.2]octanes:NH₃) = $-(2.2\pm0.1) (2.9\pm1.0)\sigma_F (0.9\pm0.2)\sigma_R (1.7\pm0.9)\sigma_I$, R² = 0.973, n=17.
- Eq. [34], E_i(cp) (4X-1Br-Benzene:NH₃)-coded = $(0.38\pm0.04) (1.1\pm0.4)\sigma_F (1.51\pm0.08)\sigma_R (0.5\pm0.4)\sigma_I$, R² = 0.986
- Eq. [35], $E_i(cp)$ (1-Bromo-4-X-bicyclo[2.2.2]octanes:NH₃)-coded = (0.84±0.06) (1.6±0.6)\sigma_F (0.5±0.1)\sigma_R (1.0±0.5)\sigma_I, $R^2 = 0.973$
- Eq. [36], Ei(cp) (FBr:3X-pyridines)= $-94.8\pm0.8 + 31\pm2*\sigma_m(X)$, R²= 0.921, n=17, SD=2.30
- Eq. [37], Ei(cp) (FBr:4X-pyridines)= $-90.9\pm0.6 + 16\pm1*\sigma_p(X)$, R²= 0.907, n=17, SD=2.45
- Eq. [38], Ei(cp) (FBr:3/4X-pyridines)= $-91.6\pm0.6 + 19\pm2.*\sigma_m/\sigma_p(X)$, R²= 0.834, n=34, SD=3.24
- Eq. [39], Ei(cp) (ClBr:3X-pyridines)= $-65.6\pm0.7 + 28.\pm2.*\sigma_m(X)$, R²= 0.921, n=17, SD=2.05
- Eq. [40], Ei(cp) (ClBr:4X-pyridines)= $-61.9\pm0.5+15.0\pm1*\sigma_p(X)$, R²= 0.920, n=17, SD=2.06
- Eq. [41], Ei(cp) (ClBr:3/4X-pyridines)= $-62.6\pm0.5 + 18.\pm1.*\sigma_m/\sigma_p(X)$, R²= 0.834, n=34, SD=2.81
- Eq. [42], Ei(cp) (FBr/ClBr:3/4X-pyridines)= $34\pm5 + 570\pm54$ *MEP mínima(3/4X-pyridines) 628 ± 70 * σ hole(FBr/ClBr) + 2402 ±776 *MEP* σ hole, R²= 0.996, n=68, SD=1.07
- Eq. [43], Ei(cp) (4X-1Br-benzenes:4X-pyridines)= $-9.88\pm0.04 4.00\pm0.08*\sigma_p(4X-1Br-benzenes) + 1.13\pm0.08*\sigma_p(4X-pyridines) + 2.21\pm0.18*\sigma_p(4X-1Br-benzenes)*\sigma_p(4X-pyridines), R^2 = 0.902, n=289, SD=0.60$
- Eq. [44], Ei(cp) (4X-1Br-benzenes:4X-pyridines)= $-12.0\pm0.2 332\pm10^{\circ}\sigma$ hole(4X-1Br-benzenes) 78±2*MEP minimum (4X-pyridines) + 6351±105* σ hole(4X-1Br-benzenes)*MEP(4X-pyridines), R²= 0.995, n=289, SD=0.13