Electronic Supplementary Information

Supported ε and β iron oxide nanomaterials by chemical vapor deposition: structure, morphology and magnetic properties

Giorgio Carraro,^a Davide Barreca,^{*b} Chiara Maccato,^a Elza Bontempi,^c Laura E. Depero,^c César de Julián Fernández,^d and Andrea Caneschi^{*e}

^a Department of Chemistry, Padova University and INSTM, via F. Marzolo, 1, 35131 Padova, Italy

^b CNR-ISTM and INSTM, Department of Chemistry - Padova University, via F. Marzolo, 1, 35131 Padova, Italy

^c Chemistry for Technologies Laboratory, Brescia University and INSTM, via Branze, 38, 25123 Brescia, Italy

^d CNR-ISTM and INSTM, via C. Golgi, 19, 20133 Milano, Italy

^e Department of Chemistry, Florence University and INSTM, via della Lastruccia, 3, 50019 Sesto Fiorentino (FI), Italy

^{*} Authors to whom correspondence should be addressed; e-mail: <u>davide.barreca@unipd.it</u> (D.B.); <u>andrea.caneschi@unifi.it</u> (A.C.).

Experimental

A cold-wall horizontal CVD apparatus was adopted for the synthesis of iron oxide systems, using $Fe(hfa)_2 \cdot TMEDA$ as a molecular source (hfa = 1,1,1,5,5,5 - hexafluoro - 2,4 - pentanedionate; TMEDA = N,N,N,N - tetramethylethylenediamine; vaporization temperature = 333 K).^{R1,R2} Growth temperature and pressure were set at 673 K, 10 mbar (ϵ -Fe₂O₃) and 773 K, 3 mbar (β -Fe₂O₃). Precursor vapors were transported towards the deposition zone by an O₂ flow (purity = 6.0; rate = 100 and 20 sccm for ϵ -Fe₂O₃ and β -Fe₂O₃, respectively) through gas lines heated at 393 K. In the case of ϵ -Fe₂O₃, an auxiliary oxygen flow (100 sccm) was introduced separately into the reaction chamber after passing through a water reservoir maintained at 323 K. Depositions were carried out for a total duration of 60 min on *p*-type Si(100) substrates (MEMC[®], Merano, Italy, 10 mm × 10 mm × 1 mm), subjected to an established pre-cleaning procedure aimed at removing surface contamination.^{R3}

XRD² images were collected by a Dymax-RAPID X-ray microdiffractometer, with a cylindrical imaging plate detector, that allows collecting diffraction data in the ranges $2\theta = 0 - 160^{\circ}$ (horizontally) and $2\theta = -45 - +45^{\circ}$ (vertically) upon using CuK α radiation. The incident beam collimators enable different spot sizes to be projected onto the sample. In this work, measurements were made in reflection mode, adopting a collimator diameter of 300 µm and an exposure time of 30 min for each XRD² pattern.

FE-SEM micrographs were collected by a Zeiss SUPRA 40VP instrument, with primary beam voltages between 10 and 20 kV.

XPS analyses were carried out by a Perkin-Elmer Φ 5600ci spectrometer at pressures lower than 1×10^{-8} mbar, using a non-monochromatized AlK α source (hv = 1486.6 eV). After a Shirley-type

background subtraction, raw XPS spectra were fitted by a nonlinear least-squares deconvolution adopting Gaussian-Lorentzian peak shapes. The reported BEs (standard deviation = \pm 0.2 eV) were corrected for charging effects by assigning to the C1s line of adventitious carbon a position of 284.8 eV.

Magnetic measurements were performed using a SQUID magnetometer (Quantum Design MPMS) operating in the 3.0 – 300 K temperature range, with an applied field up to 50 kOe. Magnetic moments of the investigated systems were obtained by subtracting the Si(100) diamagnetic contribution, that was independently measured on a bare substrate of the same dimensions. The magnetic moment was normalized to the system geometrical area.

Structural characterization: XRD² analysis

In Figs. 1a and S1a, the peaks located at $2\vartheta = 27.6^{\circ}$, 29.9° , 32.8° , 35.2° , 36.4° , 37.9° , 40.1° , 41.3° , 45.2° , 45.7° , 49.2° , 52.9° , 61.1° , 62.7° and 65.9° can be assigned respectively to the (112), (013), (122), (200)/(130), (201), (211)/(004), (202)/(132), (212), (222), (203)/(133), (142)/(015), (204)/(134), (205)/(135), (116), (323) reflections of orthorhombic ε -Fe₂O₃.^{R4}

In Figs. 1b and S1b, the peaks at $2\vartheta = 23.1^{\circ}$, 32.9° , 38.2° , 40.6° , 45.1° , 49.4° , 55.2° , 60.7° , 64.1° , 65.8 and 67.4° can be attributed respectively to the (211), (222), (400), (411), (332), (431), (440), (611), (541), (622) and (631) reflections of cubic β -Fe₂O₃.^{R5}

Fig. S1. XRD^2 images and conventional diffraction patterns for: (a) an ε -Fe₂O₃-based sample, grown on Si(100) under O₂ + H₂O atmosphere at 773 K; (b) a β -Fe₂O₃ sample, deposited on Si(100) under dry O₂ at 673 K. Reflections due to ε -, β - and α -Fe₂O₃ are marked by +, * and §,^{R6} respectively.

Morphological characterization: FE-SEM analysis

Morphological analyses evidenced a significant dependence of the system features not only on the reaction atmosphere, but also on the selected growth temperature. In particular, the nanodeposit containing both ε - and α -Fe₂O₃ (obtained at 773 K) presented well interconnected agglomerates (Fig. S2a), giving rise to a compact system remarkably different from the nanorods observed for phase-pure ε -Fe₂O₃ (673 K, Fig. 2a). On other hand, the β -Fe₂O₃ nanodeposit obtained at 673 K (Fig. S2b) presented a morphology relatively similar to the homologous one produced at 773 K (Fig. 2b), apart from a lower thickness (400±20 *vs*. 650±30 nm).

Fig. S2. Plane-view (left and centre pictures) and cross-sectional (right pictures) FE-SEM micrographs for (a) ϵ -Fe₂O₃ and (b) β -Fe₂O₃ nanomaterials, supported on Si(100). Growth conditions as in Fig. S1.

Compositional characterization: XPS analysis

The nanosystem chemical composition was investigated by XPS analysis, confirming the presence of iron(III) oxide. The presence of carbon (≈ 30 at. %) was related to surface contamination upon air exposure, since the C1s signal fell to noise level after a few minutes of Ar⁺ erosion (4.5 kV, argon partial pressure = 5×10^{-8} mbar). No fluorine contamination was observed, confirming the clean decomposition of the adopted precursor into Fe₂O₃ under the present CVD conditions. The Fe2p photoelectron peak (Fig. S3) presented two components, Fe2p_{3/2} and Fe2p_{1/2}, with binding energies (BEs) of 711.2 and 725.0 eV (SI, Fig. S3), attributed to Fe(III) in Fe₂O₃.^{R7,R8}

Fig. S3. Surface Fe2p photoelectron peaks for ϵ -Fe₂O₃ and β -Fe₂O₃ nanosystems deposited on Si(100) (growth conditions: O₂ + H₂O atmosphere, 673 K, and dry O₂ atmosphere, 773 K, respectively).

Irrespective of the phase composition, the surface O1s photopeak (Fig. S4) was fitted by two different bands. The peak (II), at BE = 531.9 eV could be attributed to the presence of absorbed hydroxyl/carbonates groups arising from atmospheric contamination, whereas a more intense signal

(I), at BE = 530.1 eV, corresponded to lattice oxygen from the Fe₂O₃ matrix.^{R5,R6} Correspondingly, the surface O/Fe ratio (1.9) was higher than the expected stoichiometric value for Fe₂O₃.

Fig. S4. Representative surface O1s photoelectron peaks for an ϵ -Fe₂O₃ sample deposited on Si(100) (growth conditions: O₂ + H₂O atmosphere, 673 K).

Magnetic measurements

Fig. S5. Magnetic field dependence of the magnetization for phase-pure β -Fe₂O₃ nanosystems supported on Si(100) (growth conditions: dry O₂ atmosphere, 773 K) at 5 and 300 K. The magnetic field was applied parallel to the substrate surface.

Fig. S6. Detail of the magnetic field dependence of the magnetization for phase-pure β -Fe₂O₃ nanosystems deposited on Si(100) (growth conditions as in Fig. S5) measured at 5 K after subtracting the high field linear contribution. The loop exhibits a coercive field of 0.5 kOe and is not closed up to 30 kOe, indicating the presence of few weak ferro- or ferrimagnetic nanoparticles in the present systems. The magnetic field was applied parallel to the substrate surface.

Fig. S7. Temperature dependence of the magnetization per unit surface of phase-pure ε -Fe₂O₃ nanosystems deposited on Si(100) (growth conditions as in Fig. S4), measured applying a magnetic field of 50 kOe parallel to the substrate surface.

References

- R1 D. Barreca, G. Carraro, A. Devi, E. Fois, A. Gasparotto, R. Seraglia, C. Maccato, C. Sada, G. Tabacchi, E. Tondello, A.Venzo and M. Winter, *Dalton Trans.*, 2012, 41, 149.
- R2 D. Barreca, G. Carraro, A. Gasparotto, C. Maccato, R. Seraglia and G. Tabacchi, *Inorg. Chim. Acta*, 2012, 15, 161.
- R3 D. Barreca, A. Gasparotto, C. Maccato, E. Tondello, O. I. Lebedev and G. Van Tendeloo, Cryst. Growth Des,. 2009, 9, 2470.
- R4 Pattern n°51122, Inorganic Chemical Structure Database (ICSD), 2007.
- R5 Pattern n°39-0238, International Centre for Diffraction Data Database (ICDD), 2007.
- R6 Pattern n°33-0664, International Centre for Diffraction Data Database (ICDD), 2007.
- R7 J. F. Moulder, W. F.Stickle, P. W. Sobol and K. D. Bomben, *Handbook of X-ray Photoelectron Spectroscopy*; Perkin-Elmer: Eden Prairie, MN, 1992.
- R8 D. Barreca, G. A. Battiston, D. Berto, R. Gerbasi and E. Tondello, *Surf. Sci. Spectra*, 2001, 8, 240.