Electronic supplementary information

Syntheses, structures, and photoluminescent properties of Zn(II) and Cd(II) coordination polymers with flexible tripodal triazole-containing ligands

Ying-Ying Liu,^a Hai-Yan Liu,^b Jian-Fang Ma,^{*a} Yan Yang^a and Jin Yang^{*a}

^a Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

^b Department of Chemical Engineering, Yingkou University Zone, Yingkou 115014, People's Republic of China

* Correspondence authors
E-mail: jianfangma@yahoo.com.cn (J.-F. Ma)
Fax: +86-431-85098620 (J.-F. Ma)
E-mail: yangjinnenu@yahoo.com.cn (J. Yang)

1				
Zn(1)-O(2)	1.963(5)	$Zn(1)-O(3)^{\#1}$	2.006(4)	
Zn(1)-N(3)	2.041(5)	$Zn(1)-N(6)^{\#2}$	2.049(5)	
$Zn(1)-O(4)^{\#1}$	2.484(5)			
$O(2)-Zn(1)-O(3)^{\#1}$	103.4(2)	O(2)-Zn(1)-N(3)	115.6(2)	
$O(3)^{\#1}$ -Zn(1)-N(3)	112.47(19)	$O(2)-Zn(1)-N(6)^{\#2}$	94.8(2)	
$O(3)^{\#1}$ -Zn(1)-N(6) ^{#2}	119.2(2)	$N(3)-Zn(1)-N(6)^{\#2}$	110.2(2)	
O(2)-Zn(1)-O(4) ^{#1}	154.15(16)	$O(3)^{\#1}-Zn(1)-O(4)^{\#1}$	57.08(17)	
$N(3)-Zn(1)-O(4)^{\#1}$	89.1(2)	$N(6)^{#2}-Zn(1)-O(4)^{#1}$	82.9(2)	
2				
Cd(1)-O(1)	2.283(5)	Cd(1)-N(1)	2.304(5)	
$Cd(1)-N(9)^{\#1}$	2.304(5)	$Cd(1)-N(4)^{\#2}$	2.334(5)	
$Cd(1)-O(4)^{\#3}$	2.364(4)	$Cd(1)-O(3)^{\#3}$	2.575(5)	
Cd(1)-O(1W)	2.608(11)			
O(1)-Cd(1)-N(1)	82.64(19)	O(1)-Cd(1)-N(9) ^{#1}	99.5(2)	

Table S1. Selected bond distances (Å) and angles (°) for compounds 1-7.

O(1)-Cd(1)-O(4) ^{#3}	145.38(19)	$N(1)-Cd(1)-O(4)^{\#3}$	131.39(16)
$N(9)^{\#1}-Cd(1)-O(4)^{\#3}$	88.55(19)	$N(4)^{#2}$ -Cd(1)-O(4) ^{#3}	87.68(18)
O(1)-Cd(1)-O(3) ^{#3}	158.06(19)	$N(1)-Cd(1)-O(3)^{\#3}$	79.41(16)
$N(9)^{\#1}$ -Cd(1)-O(3) $^{\#3}$	92.77(19)	$N(4)^{#2}$ -Cd(1)-O(3) ^{#3}	87.10(18)
$O(4)^{\#3}-Cd(1)-O(3)^{\#3}$	52.23(14)	O(1)-Cd(1)-O(1W)	70.7(3)
N(1)-Cd(1)-O(1W)	147.5(2)	N(9) ^{#1} -Cd(1)-O(1W)	77.5(3)
N(4) ^{#2} -Cd(1)-O(1W)	99.0(3)	O(4) ^{#3} -Cd(1)-O(1W)	78.5(2)
O(3) ^{#3} -Cd(1)-O(1W)	130.1(2)		
3			
$Zn(1)-O(7)^{\#1}$	1.956(6)	Zn(1)-O(1)	1.980(6)
Zn(1)-N(1)	1.990(8)	$Zn(1)-N(6)^{\#2}$	2.054(8)
Zn(2)-O(5)	1.929(6)	Zn(2)-O(3)	1.967(6)
Zn(2)-O(1W)	1.985(8)	$Zn(2)-N(9)^{\#3}$	1.989(10)
$O(7)^{\#1}$ -Zn(1)-O(1)	115.9(3)	$O(7)^{\#1}$ -Zn(1)-N(1)	113.2(3)
O(1)-Zn(1)-N(1)	120.3(3)	$O(7)^{\#1}$ -Zn(1)-N(6) $^{\#2}$	101.9(3)
O(1)-Zn(1)-N(6) ^{#2}	93.4(3)	$N(1)-Zn(1)-N(6)^{#2}$	107.8(3)
O(5)-Zn(2)-O(3)	110.6(3)	O(5)-Zn(2)-O(1W)	103.8(4)
O(3)-Zn(2)-O(1W)	96.6(3)	$O(5)-Zn(2)-N(9)^{\#3}$	117.4(3)
O(3)-Zn(2)-N(9) ^{#3}	119.8(3)	$O(1W)-Zn(2)-N(9)^{\#3}$	104.6(4)
4			
Cd(1)-O(8) ^{#1}	2.209(4)	Cd(1)-O(6) ^{#2}	2.226(3)
Cd(1)-O(3)	2.298(3)	Cd(1)-N(5)	2.317(4)
$Cd(1)-N(3)^{\#3}$	2.318(5)	Cd(1)-O(4)	2.498(5)
Cd(2)-O(7) ^{#4}	2.238(3)	Cd(2)-O(5) ^{#5}	2.250(3)
$Cd(2)-N(9)^{\#5}$	2.281(5)	Cd(2)-O(1)	2.334(3)
Cd(2)-N(1)	2.357(4)	Cd(2)-O(2)	2.439(3)
$O(8)^{\#1}-Cd(1)-O(6)^{\#2}$	119.24(14)	$O(8)^{\#1}-Cd(1)-O(3)$	96.43(13)
O(6) ^{#2} -Cd(1)-O(3)	144.30(13)	$O(8)^{\#1}-Cd(1)-N(3)^{\#3}$	100.13(16)
$O(6)^{#2}-Cd(1)-N(3)^{#3}$	86.44(15)	$O(3)-Cd(1)-N(3)^{\#3}$	88.92(15)
$O(8)^{\#1}-Cd(1)-N(5)$	96.29(19)	$O(6)^{#2}-Cd(1)-N(5)$	86.94(17)
O(3)-Cd(1)-N(5)	87.67(17)	$N(3)^{#3}$ -Cd(1)-N(5)	163.50(19)
O(8) ^{#1} -Cd(1)-O(4)	150.71(13)	O(6) ^{#2} -Cd(1)-O(4)	89.99(12)
O(3)-Cd(1)-O(4)	54.31(11)	$N(3)^{#3}-Cd(1)-O(4)$	82.31(14)

O(1)-Cd(1)-N(4)^{#2}

 $N(9)^{\#1}$ -Cd(1)-N(4) $^{\#2}$

82.1(2)

175.32(19)

 $N(1)-Cd(1)-N(9)^{\#1}$

N(1)-Cd(1)-N(4)#2

89.3(2)

95.3(2)

Electronic Supplementary Material (ESI) for CrystEngComm
This journal is The Boyal Society of Chemistry 2012
This journal is The Royal Society of Chemistry 2013

N(5)-Cd(1)-O(4)	82.59(17)	O(7) ^{#4} -Cd(2)-O(5) ^{#5}	122.57(13)
$O(7)^{#4}-Cd(2)-N(9)^{#5}$	92.37(16)	O(5) ^{#5} -Cd(2)-N(9) ^{#5}	88.63(16)
O(7) ^{#4} -Cd(2)-O(1)	144.38(13)	O(5) ^{#5} -Cd(2)-O(1)	92.82(13)
N(9) ^{#5} -Cd(2)-O(1)	92.49(16)	$O(7)^{#4}-Cd(2)-N(1)$	88.59(14)
$O(5)^{\#5}-Cd(2)-N(1)$	82.72(14)	$N(9)^{\#5}-Cd(2)-N(1)$	170.29(17)
O(1)-Cd(2)-N(1)	92.34(14)	O(7) ^{#4} -Cd(2)-O(2)	89.95(12)
$O(5)^{\#5}-Cd(2)-O(2)$	147.23(12)	$N(9)^{\#5}-Cd(2)-O(2)$	94.46(17)
O(1)-Cd(2)-O(2)	54.49(12)	N(1)-Cd(2)-O(2)	95.21(13)
5			
Zn(1)-O(3)	1.973(4)	Zn(1)-O(5)	1.974(5)
Zn(1)-N(10)	2.017(6)	$Zn(1)-N(17)^{\#1}$	2.062(5)
Zn(2)-O(11)	1.956(4)	Zn(2)-O(9)	1.963(4)
Zn(2)-N(4)	2.018(5)	$Zn(2)-N(15)^{\#2}$	2.035(5)
Zn(3)-O(2)	1.959(4)	$Zn(3)-O(8)^{\#3}$	1.962(5)
Zn(3)-N(1)	2.020(5)	$Zn(3)-N(8)^{\#4}$	2.024(5)
O(3)-Zn(1)-O(5)	106.9(2)	O(3)-Zn(1)-N(10)	113.2(2)
O(5)-Zn(1)-N(10)	120.8(2)	O(3)-Zn(1)-N(17) ^{#1}	110.7(2)
O(5)-Zn(1)-N(17) ^{#1}	92.2(2)	N(10)-Zn(1)-N(17) ^{#1}	111.0(2)
O(11)-Zn(2)-O(9)	106.6(2)	O(11)-Zn(2)-N(4)	109.3(2)
O(9)-Zn(2)-N(4)	114.8(2)	O(11)-Zn(2)-N(15) ^{#2}	92.0(2)
O(9)-Zn(2)-N(15) ^{#2}	115.6(2)	N(4)-Zn(2)-N(15) ^{#2}	115.4(2)
O(2)-Zn(3)-O(8) ^{#3}	105.4(2)	O(2)-Zn(3)-N(1)	115.8(2)
$O(8)^{#3}$ -Zn(3)-N(1)	92.3(2)	O(2)-Zn(3)-N(8) ^{#4}	110.4(2)
$O(8)^{#3}$ -Zn(3)-N(8) ^{#4}	110.3(2)	N(1)-Zn(3)-N(8) ^{#4}	120.0(2)
6			
$Zn(1)-O(3)^{\#1}$	1.928(3)	Zn(1)-O(1)	1.936(4)
$Zn(1)-N(7)^{#2}$	2.015(4)	Zn(1)-N(1)	2.028(5)
$O(3)^{\#1}$ -Zn(1)-O(1)	111.86(16)	$O(3)^{\#1}-Zn(1)-N(7)^{\#2}$	119.02(17)
$O(1)-Zn(1)-N(7)^{#2}$	97.58(17)	$O(3)^{\#1}$ -Zn(1)-N(1)	109.99(18)
O(1)-Zn(1)-N(1)	109.97(17)	$N(7)^{#2}$ -Zn(1)-N(1)	107.67(18)
7			
Cd(1)-O(1)	2.264(3)	Cd(1)-N(8) ^{#1}	2.307(3)
$Cd(1)-N(5)^{#2}$	2.336(3)	$Cd(1)-O(4)^{\#3}$	2.390(3)
$Cd(1)-O(3)^{\#3}$	2.427(3)	Cd(1)-N(1)	2.432(4)
O(1)-Cd(1)-N(8) ^{#1}	87.08(11)	$O(1)-Cd(1)-N(5)^{#2}$	102.28(11)

$N(8)^{\#1}-Cd(1)-N(5)^{\#2}$	168.36(11)	$O(1)-Cd(1)-O(4)^{\#3}$	171.43(10)
$N(8)^{\#1}-Cd(1)-O(4)^{\#3}$	84.44(10)	$N(5)^{#2}$ -Cd(1)-O(4) ^{#3}	86.01(11)
O(1)-Cd(1)-O(3) ^{#3}	126.37(11)	$N(8)^{\#1}$ -Cd(1)-O(3) $^{\#3}$	87.45(10)
$N(5)^{#2}$ -Cd(1)-O(3) ^{#3}	92.39(11)	$O(4)^{\#3}$ -Cd(1)-O(3) ^{\#3}	54.45(10)

Symmetry codes for 1: ^{#1} -x+1, -y+1, -z+1; ^{#2} x, y+1, z+1. For 2: ^{#1} x, -y, z+1/2, ^{#2} x-1/2, y-1/2, z; ^{#3} -x+3/2, y+1/2, -z+3/2. For 3: ^{#1} -x+2, y-1/2, -z+3/2; ^{#2} x, y-1, z; ^{#3} -x+2, -y, -z+1. For 4: ^{#1} x+1/2, -y+1/2, z+1/2; ^{#2} x-1, y, z; ^{#3} -x-1/2, y-1/2, -z+1/2; ^{#4} x+1, y, z; ^{#5} x-1/2, -y+1/2, z-1/2. For 5: ^{#1} -x+1, -y+1, -z+1; ^{#2} -x+2, -y+1, -z+2; ^{#3} x+1, y, z+1; ^{#4} -x+3, -y, -z+2. For 6: ^{#1} -x+1, -y, -z+1; ^{#2} x, y, z+1. For 7: ^{#1} x-1, y, z; ^{#2} y+3/2, -x+3/2, z+1/4; ^{#3} x-1/2, -y+1/2, -z+1/4.

 Table S2. Hydrogen-bonding parameters for 3, 5 and 6 (in Å and deg)

	D-H···A	d	(D-H)	$d(D \cdots A)$
∠(D-H···A)				
3				
O(1W)-H(1B)O(6) ^{#4}	0.89(2)	1.76(6)	2.616(10)	160(15)
O(1W)-H(1A)O(8) ^{#5}	0.89(2)	1.83(5)	2.692(9)	162(15)
5				
O(1W)-H(1B)O(12)	0.90(2)	2.4(2)	3.032(17)	128(21)
O(1W)-H(1A)O(1) ^{#5}	0.91(2)	2.5(3)	3.11(2)	124(25)
6				
O(1W)-H(1B)O(2)	0.87(2)	2.05(12)	2.836(11)	150(21)
O(1W)-H(1A)N(4) ^{#3}	0.87(2)	2.27(19)	2.99(2)	140(25)
Symmetry codes for 3: ^{#4} -:	x+3, -y, -z+2; ^{#5}	x, -y+1/2, z-	1/2. For 5 : ^{#5} -	-x+2, -y, -z+2.
— - #3				

For **6**: $^{\#3}$ -x, -y+1, -z.

Fig. S1 The simulated (green) and experimental (red) XRPD patterns for the compounds **1-7** (the diffraction peaks of both simulated and experimental patterns match well in relevant positions, indicating that the phase purities of compounds **1-7** are good).

Fig. S2. View of the 3- and 5-connected nodes of 2.

Fig. S3. View of the 3D supramolecular architecture of 3 connected by hydrogen bonding interactions of neighboring layers.

Fig. S4. View of the 4-connected and 5-connected nodes of 4.

Fig. S5. View of the 3-connected, 4-connected and 5-connected nodes of 7.

(a)

(b)

Fig. S6. View of the L connected M(II) structures in 2 (a), 3 (b), 4 (c), and 7 (d).

Fig. S7. (a) Solid-state emission spectra of free o-H₂bdc, m-H₂bdc, p-H₂bdc, H₄btec ligands at room temperature. (b) The excitation and emission spectra of L ligand at room temperature.