## Supporting Information

## Diaminotriazine substituted diphenyl ether: Reversible structural

## transformation and solvent dependent solid state fluorescence

Savarimuthu Philip Anthony<sup>a\*</sup> and Sunil Varughese<sup>b</sup>

<sup>a)</sup>School of Chemical & Biotechnology, SASTRA University, Thanjavur-613 403, Tamil Nadu, India

E-mail: philip@biotech.sastra.edu

<sup>b)</sup>Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore,

560 012, India.

*General procedure for the Cyanophenoxy-benzonitrile (a–e) preparation:* Fluorobenzonitrile (10 mmol), hydroxy benzonitrile (10~12 mmol) and potassium carbonate (20 mmol) were added to 30 ml of dimethyl sulfoxide (DMSO). Appling microwave power 300 W rises the DMSO temperature from room temperature to boiling point within 30–40 s and then the solution was held boiling for 10 min. After completion of the reaction, it was cooled to room temperature, put into ice water and stirred for 30 min to precipitate the product. Filtration of the precipitation followed by washing with water afforded the desired products (85 %).

2-(2'-cyanophenoxy)benzonitrile (a): It was prepared from 2-hydroxy benzonitrile and 2-fluorobenzonitrile: <sup>1</sup>H: 7.73, d, 2H, 7.54, t, 2H, 7.36, d, t, 2H, 7.00, d, 1H; <sup>13</sup>C: 157.8, 134.6, 132.3, 121.4, 119.5, 117.3, 106.9.

2-(3'-cyanophenoxy)benzonitrile (b): It was prepared from 3-hydroxy benzonitrile and 2-fluorobenzonitrile: <sup>1</sup>H: 7.73, d, 1H, 7.54-7.60, m, 3H, 7.28-7.36, m, 3H, 7.00, d, 1H; <sup>13</sup>C: 157.4, 155.6, 134.2, 133.9, 130.7, 127.8, 124.1, 123.5, 121.8, 118.1, 117.3, 114.9, 113.6, 104.6.

2-(4'-cyanophenoxy)benzonitrile (c): It was prepared from 2-hydroxy benzonitrile and 4-fluorobenzonitrile: <sup>1</sup>H: 7.74, d, 1H, 7.71, d, 2H, 7.62, t, 1H, 7.34, t, 1H, 7.14, d, 2H,

7.10, d,1H; <sup>13</sup>C: 159.0, 156.6, 134.2, 134.0, 133.8, 124.6, 119.2, 118.8, 117.8, 114.8, 107.5, 105.2.

3-(4'-cyanophenoxy)benzonitrile (d): It was prepared from 3-hydroxy benzonitrile and 4-fluorobenzonitrile: <sup>1</sup>H: 7.69, d, 2H, 7.51-7.54, m, 2H, 7.30-7.37, m, 1H, 7.28, s, 1H, 7.10, d, 2H; <sup>13</sup>C: 160.0, 154.8, 133.5, 130.6, 127.7, 123.6, 122.1, 118.0, 117.8, 117.6, 113.5, 107.0.

4-(4'-cyanophenoxy)benzonitrile (e): It was prepared from 4-hydroxy benzonitrile and 4-fluorobenzonitrile: <sup>1</sup>H: 7.72, d, 2H; 7.12, d, 2H; <sup>13</sup>C: 158.8, 133.6, 119.2, 117.4, 107.9.



Figure S1. Crystal packing of 1. Only H atoms in the amines are shown; C (grey), N (blue), O (red), S (yellow) H (white); H-bonds (broken line). Methyl hydrogen atoms of DMSO are disordered in the crystal lattice. H-bonds (broken line).  $d_{D...A}$  distances (Å) are marked.

## Table S1. H-bond table

|    | N–H…N                                                                                | №-Н…О                                                                            | O−H…N                                      | C–H…N                                                                     | С-Н…О                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С–Н…S               |
|----|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                 | 2.04 2.99(7)<br>156                                                              |                                            | 2.72 3.75(1) 156<br>2.73 3.54(5) 132<br>2.57 3.48(3) 140                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| 3a | 2.16 3.15(1) 163<br>1.95 2.97(3) 175                                                 | 2.13 3.10(2)<br>158                                                              |                                            | 2.62 3.58(9) 148   2.66 3.73(2) 167   2.09 2.90(6) 129   2.06 2.90(6) 133 | $2.71  3.62(5) \\ 140 \\ 1.83  2.79(1) \\ 143 \\ 2.01  2.79(1) \\ 125 \\ 125 \\ 140 \\ 125 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 120 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 120 \\ 140 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 100 \\ 120 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 1$ | 2.55<br>3.62(1) 164 |
| 3b | 2.063.08(1)1792.303.16(1)1412.043.05(8)1732.033.01(1)162                             | $2.25  3.12(1) \\ 142 \\ 2.40  3.37(7) \\ 161 \\ 2.07  2.96(1) \\ 145 \\ 145 \\$ | 1.86 2.84(1)<br>167<br>2.30 3.16(3)<br>146 | 2.25 3.29(5)<br>162                                                       | 2.51 3.55(7)<br>162<br>2.27 3.35(1)<br>168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| 3c | 2.233.19(6)1592.713.52(5)1372.063.06(4)1712.103.10(5)1732.103.10(9)1682.013.02(5)178 |                                                                                  |                                            | 2.68 3.61(5) 144<br>2.55 3.62(5) 170<br>2.65 3.44(1) 128                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| 5  | 2.03 3.02(9) 164<br>2.04 3.06(1) 174<br>2.04 3.04(9) 170<br>2.04 3.05(1) 171         | 1.99 2.95(7)<br>159<br>2.12 2.85(5)<br>128                                       | 1.87 2.84(4)<br>167                        | 2.63 3.54(8) 142<br>2.64 3.53(2) 138                                      | 2.47 3.38(2)<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |

The columns are in the order, H<sup>...</sup>A, D<sup>...</sup>A (Å) and D-H<sup>...</sup>A angle (°)



Figure S2. Thermo-gravimetric analysis.



Figure S3. PXRD patterns of 1

(a)



(b)



(c)



Figure S4. Crystal packing of 3a (a), 3b (b) and 3c (c). Only H atoms in the amines are shown; C (grey), N (blue), O (red), H (white); H-bonds (broken line). Ethanol oxygens are disordered in the crystal lattice of *O*, *P*-3a. H-bonds (broken line).  $d_{D...A}$  distances (Å) are marked.



Figure S5. PXRD patterns of 3.



S6. PXRD patterns of 2 and 4.



Figure S7. Crystal packing of 5. Only H atoms in the amines are shown; C (grey), N (blue), O (red), H (white); H-bonds (broken line). Pink and orange colored molecules show the opposite helices in the crystal lattice. H-bonds (broken line).  $d_{D...A}$  distances (Å) are marked.



Figure S8. PXRD patterns.



Figure S9. Space-filling crystal packing of (a) 5, (b) 1, and (c) 3b.



Figure S10. The molecular twist of diaminotriazine in 1, 3 and 5 defined by torsional angle  $(\tau)$ .



Figure S10. Molecular structure with numbering between diaminotriazine and fluorescence maximum.