Supporting Information

Single-Crystal to Single-Crystal Transformation from a 1-D Chain-like Structure to a 2-D Coordination Polymer on Heating

Xu-Jia Hong, Ming-Fang Wang, Hong-Guang Jin,* Qing-Guang Zhan, Yi-Ting Liu,

Hong-Yang Jia, Xiang Liu and Yue-Peng Cai*

^aSchool of Chemistry and Environment, South China Normal University Guangzhou, 510006, China ^bState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, PR China

Content

Table S1 Crystal data and structure refinement of two compounds 1-2.

 Table S2 Selected bond lengths and angles for the compounds 1-2.

Table S3 Distances (Å) and angles (°) of hydrogen bonds for the compounds 1-2.

Figure S1 Coordination environment of Er^{III} ion and coordination mode of ClO_4^- ion in 1.

Figure S2 The photo pictures of the single crystals of 1 and 2 before and after transformation.

Figure S3 The TGA and DSC curves of compounds 1 (a) and 2 (b).

Figure S4 The topotactic transformation from 1 to 2.

Checkcif report for compounds 1 (CCDC 897010) and 2 (CCDC 897011)

	1	2
Chemical formula	$C_9H_{16}ClErN_2O_{14}$	C ₉ H ₄ ClErN ₂ O ₈
Μ	578.95	470.85
Crystal system	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> /Å	7.1312(12)	6.8722(9)
b /Å	9.5963(16)	11.948(4)
<i>c</i> /Å	12.431(2)	10.9592(15)
α /°	100.546(2)	101.529(2)
eta /°	98.090(2)	106.681(2)
$\gamma/^{\circ}$	95.025(2)	95.551(2)
V/Å ³	822.4(2)	549.87(13)
Ζ	2	2
T/K	298(2)	298(2)
<i>F</i> (000)	562	442
$D_{\rm calcd}$ / g cm ⁻³	2.338	2.844
μ/mm^{-1}	5.347	7.923
λ /Å	0.71073	0.71073
$R_{ m int}$	0.0178	0.0190
data/restraint/parm	2896 / 18 / 281	1958 / 0 / 190
GOF	1.043	1.021
$R_1 \left[I = 2 \sigma(I) \right]^a$	0.0283	0.0241
$wR_2 \left[I = 2\sigma(I)\right]^b$	0.0756	0.0584
R_1 [all data] ^{<i>a</i>}	0.0298	0.0259
wR_2 [all data] ^b	0.0764	0.0594

Table S1 Crystal data and structure refinement of two compounds 1-2.

 ${}^{a}R_{l} = \Sigma ||F_{o}| - |F_{c}||/|F_{o}|, {}^{b}wR_{2} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{1/2}, \text{ where } w = 1/[\sigma^{2}(F_{o}^{2}) + (aP)_{2} + bP]. P = (F_{o}^{2} + 2F_{c}^{2})/3.$

		1	
Er(1)-O(1)	2.379(4)	I O(1)-Er(1)-O(10)	140.83(13)
Er(1)-O(10)	2.406(4)	O(1)-Er(1)-O(6)#1	81.63(12)
Er(1)-O(6)#1	2.441(4)	O(10)-Er(1)-O(6)#1	137.39(13)
Er(1)-O(9)	2.442(4)	O(1)-Er(1)-O(9)	76.21(13)
Er(1)-O(11)	2.459(4)	O(10)-Er(1)-O(9)	70.83(14)
Er(1)-O(4)#2	2.483(4)	O(6)#1-Er(1)-O(9)	143.78(13)
Er(1)-O(5)	2.508(4)	O(1)-Er(1)-O(11)	140.55(13)
Er(1)-O(3)#2	2.534(4)	O(10)-Er(1)-O(11)	69.63(14)
Er(1)-O(6)	2.613(4)	O(6)#1-Er(1)-O(11)	71.56(13)
O(11)-Er(1)-O(4)#2	76.30(13)	O(9)-Er(1)-O(11)	140.39(14)
O(1)-Er(1)-O(5)	79.48(13)	O(1)-Er(1)-O(4)#2	126.56(13)
O(10)-Er(1)-O(5)	77.04(14)	O(10)-Er(1)-O(4)#2	75.88(14)
O(6)#1-Er(1)-O(5)	119.00(12)	O(6)#1-Er(1)-O(4)#2	78.53(13)
O(9)-Er(1)-O(5)	84.77(13)	O(9)-Er(1)-O(4)#2	92.07(14)
O(11)-Er(1)-O(5)	88.65(14)	O(6)#1-Er(1)-O(3)#2	77.58(12)
O(4)#2-Er(1)-O(5)	152.23(13)	O(9)-Er(1)-O(3)#2	69.37(13)
O(1)-Er(1)-O(3)#2	75.43(13)	O(11)-Er(1)-O(3)#2	123.92(13)
O(10)-Er(1)-O(3)#2	110.75(14)	O(4)#2-Er(1)-O(3)#2	52.05(12)
O(3)#2-Er(1)-O(6)	132.12(12)	O(5)-Er(1)-O(3)#2	147.41(13)
O(5)-Er(1)-O(6)	54.86(11)	O(1)-Er(1)-O(6)	71.65(12)
O(4)#2-Er(1)-O(6)	136.12(12)	O(10)-Er(1)-O(6)	116.80(14)
O(11)-Er(1)-O(6)	70.79(13)	O(6)#1-Er(1)-O(6)	64.15(14)
O(9)-Er(1)-O(6)	131.69(13)		
		2	
Er(1)-O(2)#3	2.220(4)	O(2)#3-Er(1)-O(1)#4	81.19(14)
Er(1)-O(1)#4	2.281(4)	O(2)#3-Er(1)-O(5)#3	85.56(14)
Er(1)-O(5)#3	2.305(4)	O(1)#4-Er(1)-O(5)#3	142.77(14)
Er(1)-O(6)	2.315(4)	O(2)#3-Er(1)-O(6)	98.09(14)
Er(1)-O(8)#5	2.375(4)	O(1)#4-Er(1)-O(6)	75.05(14)
Er(1)-O(4)	2.404(4)	O(5)#3-Er(1)-O(6)	141.56(14)
Er(1)-O(3)#3	2.405(4)	O(2)#3-Er(1)-O(8)#5	89.18(14)
Er(1)-O(3)	2.445(4)	O(1)#4-Er(1)-O(8)#5	72.79(13)
Er(1)-Er(1)#3	3.8698(6)	O(5)#3-Er(1)-O(8)#5	72.38(13)
O(5)#3-Er(1)-O(4)	108.88(14)	O(6)-Er(1)-O(8)#5	145.47(13)
O(6)-Er(1)-O(4)	79.32(14)	O(2)#3-Er(1)-O(4)	160.07(14)
O(8)#5-Er(1)-O(4)	82.55(14)	O(1)#4-Er(1)-O(4)	79.05(14)
O(2)#3-Er(1)-O(3)#3	72.76(13)	O(1)#4-Er(1)-O(3)#3	133.48(13)

O(5)#3-Er(1)-O(3)#3	73.32(13)	O(6)-Er(1)-O(3)#3	71.42(13)
O(8)#5-Er(1)-O(3)#3	142.20(13)	O(4)-Er(1)-O(3)#3	123.81(13)
O(6)-Er(1)-O(3)	78.82(13)	O(2)#3-Er(1)-O(3)	145.90(13)
O(8)#5-Er(1)-O(3)	112.72(13)	O(1)#4-Er(1)-O(3)	129.09(13)
O(4)-Er(1)-O(3)	53.43(13)	O(5)#3-Er(1)-O(3)	77.32(13)
O(3)#3-Er(1)-O(3)	74.14(14)		

^aSymmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z; #2 -x+1,-y+1,-z; #3 -x,-y+1,-z; #4

x,y-1,z; #5 x+1,y,z.

D-H···A	Distance (D-H)	Distance (H···A)	Distance(D····A)	Angle (D-H…A)
		1		
O(9)-H(9A)O(12)#3	0.848(10)	2.04(3)	2.804(6)	150(5)
O(9)-H(9B)O(3)	0.848(10)	2.021(17)	2.857(6)	168(6)
O(10)-H(10A)O(2)#3	0.845(10)	1.82(2)	2.651(6)	167(7)
O(10)-H(10B)O(8)#4	0.845(10)	1.937(14)	2.778(6)	173(7)
O(10)-H(10B)Cl(1)#4	0.845(10)	2.98(4)	3.735(4)	150(6)
O(11)-H(11A)O(1)#1	0.847(10)	1.876(14)	2.718(5)	173(6)
O(11)-H(11B)O(5)#4	0.846(10)	2.21(2)	3.037(6)	164(7)
O(11)-H(11B)O(8)#4	0.846(10)	2.65(5)	3.168(6)	121(5)
O(11)-H(11B)Cl(1)#4	0.846(10)	2.91(3)	3.677(4)	151(5)
O(12)-H(12A)O(4)	0.851(10)	2.029(19)	2.869(6)	169(8)
O(12)-H(12B)O(8)#5	0.848(10)	2.40(5)	3.041(6)	132(5)
O(13)-H(13A)O(7)#6	0.845(10)	2.37(3)	3.171(7)	159(7)
O(13)-H(13B)O(8)#7	0.844(11)	2.06(2)	2.893(7)	168(9)
O(13)-H(13B)Cl(1)#7	0.844(11)	2.99(6)	3.688(6)	142(7)
O(14)-H(14A)O(7)	0.850(10)	1.93(2)	2.773(7)	168(8)
O(14)-H(14B)O(13)#8	0.849(10)	2.04(3)	2.862(8)	164(9)
N(1)-H(1)O(14)	0.86	1.98	2.761(7)	150.3
N(1)-H(1)O(12)#6	0.86	2.46	2.990(7)	120.9
$\pi\pi^{\mathrm{a}}$			3.569	
$\pi\pi^{\mathrm{b}}$			3.835	
		2		
N(1)-H(1)O(8)#9	0.86	2.11	2.945(6)	163.0
N(1)-H(1)O(1)#10	0.86	2.46	2.886(6)	111.3
C(7)-H(7)O(8)#9	0.930	2.543(5)	3.469(5)	173.6
$\pi\pi^{\mathrm{a}}$			3.514 and 3.751	

Table S3 Distances (Å) and angles (°) of h	ydrogen bonds for	compounds 1-2.

*Symmetry transformation used to generate equivalent atoms: #1 -x+1,-y,-z; #2 -x+1,-y+1,-z; #3 x+1,y,z; #4 -x+2,-y,-z; #5 x-1,y+1,z; #6 - x+1,-y+1,-z+1; #7 -x+2,-y+1,-z+1; #8 x,y-1,z; #9 -x,-y+1,-z+1; #10 -x+1,-y+2,-z+1. π ... π^{a} denotes the centroid-to-centroid distance (Å) between the adjacent benzene ring and imidazole ring, and and π ... π^{b} denotes the centroid-to-centroid distance (Å) between two imidazole rings from two adjacent layers.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2013

Figure S1

Figure S2

Figure S3

From above figure S4 (a, b), the topotactic behavior was happened in this system, each dinuclear Er(III) can be viewed as node in both 1 and 2, and node-and-linker 1-D chain was formed for 1, while (4,4) topology was simplified for 2. With increase of the temperature, Er^{3+} ions as well as ligand bidc²⁻ underwent conformational changes of upward and downward/left and right movement, and the weak interaction between 1-D chains in complex 1 was changed into coordination bonding interaction, and then adjacent chains are connected with each other to form the 2-D framework, which finally resulted in the structural transformation to coordination polymer 2. Although both crystals 1 and 2 were crystallized in the same triclinic space group P-1, however, the cell volume of 2 decreased 273 $Å^3$, stemming from the departure of three coordinated and three lattice water molecules in 1. Therefore, the single crystal transformation between 1 and 2 is maybe ascribes to hydrogen bond transform to coordination bond after increasing temperature.

checkCIF/PLATON (full publication check)

No syntax errors found. Please wait while processing CIF dictionary Interpreting this report

Datablock: CCDC 897010(1)

Bond precisi	on: C-C =	0.0076 A	Wavelength=0.71073
Cell:	a=7.1312(12)	b=9.5963(16)	c=12.431(2)
	alpha=100.546(2)	beta=98.090(2)	gamma=95.025(2)
Temperature:	298 K		
	Calcula	ated	Reported
Volume	822.4(2	2)	822.4(2)
Space group	P -1		P-1
Hall group	-P 1		2
Moiety formu	la C9 H10	Cl Er N2 011, 3(H2	0) ?
Sum formula	C9 H16	Cl Er N2 014	C9 H16 C1 Er N2 014
Mr	578.95		578.95
Dx,g cm-3	2.338		2.338
Z	2		2
Mu (mm-1)	5.347		5.347
F000	562.0		562.0
F000'	562.14		
h,k,lmax	8,11,1	4	8,11,14
Nref	2961		2896
Tmin,Tmax	0.304,	0.526	0.373,0.566
Tmin'	0.281		
Correction n	method= MULTI-SCA	N	
Data complet	teness= 0.978	Theta(max) =	25.200
R(reflection	ns)= 0.0283(2758) wR2(ref	lections)= 0.0764(2896)
S = 1.043	Npa	r= 281	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C

			-									
PLAT029	_ALERT	_3_C	_diffr	n_mea	asured_	fraction	_theta_f	ull L	. wo		0.978	
PLAT048	_ALERT	_1_C	Moiet	yForm	ula Not	Given					?	
PLAT125	ALERT	_4_C	No '_	symm	etry_sp	ace_gro	up_nam	e_H	iall' G	Siven		?
PLAT213	ALERT	_2_C	Atom	C4		has ADP	max/m	in R	atio		3.2 p	rola
PLAT417	ALERT	_2_C	Short	t Inter	D-HH-	D H	13B	Η1	4B		2.11 Ar	ng.
PLAT480	_ALERT	_4_C	Long	HA I	H-Bond	Reporte	d H10B		CL1		2.98	Ang.
PLAT480	_ALERT	_4_C	Long	HA I	H-Bond	Reporte	d H11B		08		2.65	Ang.
PLAT480	_ALERT	_4_C	Long	HA I	H-Bond	Reporte	d H11B		CL1		2.91	Ang.
PLAT480	_ALERT	_4_C	Long	HA I	H-Bond	Reporte	d H13B		CL1		2.99	Ang.
PLAT732	ALERT_	1_C A	ngle	Calc	114(7	'), Rep	113(3))		2.33	su-Ra	
	H14B -(D14 -I	H14A	1.55	5 1.555	5 1.555	#	- 1	74			
PLAT732	_ALERT_	1_C A	ngle	Calc	114(7	'), Rep	113(3))		2.33	su-Ra	
	H14A -(D14 -I	H14B	1.55	5 1.555	5 1.555	#		76			

Alert level G

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013

checkCIF/PLATON (full publication check)

No syntax errors found. Please wait while processing CIF dictionary Interpreting this report

Datablock: CCDC 897011 (2)

Bond precisi	on: C-C =	0.0076 A	Wa	avelength=0.71073
Cell:	a=6.8722(9)	b=7.8857(11)	c=10.9592	(15)
	alpha=101.529(2)	beta=106.681(2)	gamma=95.5	551 (2)
Temperature:	298 K			
	Calcula	ated		Reported
Volume	549.87	(13)		549.87(13)
Space group	P -1			P-1
Hall group	-P 1			?
Moiety formu	la C9 H4 (Cl Er N2 08		?
Sum formula	C9 H4 (1 Er N2 O8		C9 H4 C1 Er N2 O8
Mr	470.85			470.85
Dx,g cm-3	2.844			2.844
Z	2			2
Mu (mm-1)	7.923			7.923
F000	442.0			442.0
F000'	442.04			
h,k,lmax	8,9,13			8,9,13
Nref	1994			1958
Tmin, Tmax	0.148,	0.281		0.233,0.364
Tmin'	0.117			
Correction r	nethod= MULTI-SCA	N		
Data complet	teness= 0.982	Theta (max)= 25.250	
R(reflection	ns)= 0.0241(1833) wR2(re	eflections) =	0.0594(1958)
S = 1.021	Npa	r= 190		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C

 PLAT048_ALERT_1_C MoietyFormula Not Given
 ?

 PLAT125_ALERT_4_C No '_symmetry_space_group_name_Hall' Given
 ?

 PLAT774_ALERT_1_C Suspect X-Y Bond in CIF:
 ER1
 - ER1

 3.87 Ang.

Alert level G

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 5 ALERT level G = General information/check it is not something unexpected