Supporting Information

Na₂Cd₇B8O₂₀: A New Noncentrosymmetric Compound with Special

[B₃O₇] Units

Lin Zhou^{a, b}, Shilie Pan^{a*}, Xiaoyu Dong^{a, b}, Hongwei Yu^{a, b}, Hongping Wu^a, Fangfang Zhang^a, Zhongxiang,

Zhou^a

^aXinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute

of Physics & Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi 830011,

China; ^bUniversity of the Chinese Academy of Sciences, Beijing 100049, China

*To whom correspondence should be addressed. E-mail: slpan@ms.xjb.ac.cn (S. Pan). Phone: (86)-991-

3674558. Fax: (86)-991-3838957.

Figure S1. The XRD patterns for $Na_2Cd_7B_8O_{20}$. The black curve is the calculated one, the red curve is the pattern of the stoichiometric powder mixtures, the blue curve is the pattern of powder mixture with excessive Na and the green curve is the pattern of powder mixture with excessive Cd.

Figure S2. The structure of the two-dimensional layer composed of CdO_n (n = 6, 7) polyhedra shown in blue and Na/CdO_n (n = 5, 6) polyhedra in green extending in the (010) plane.

Figure S3. The structure of [B₃O₇] unit.

Figure S4. The IR spectrum of Na₂Cd₇B₈O₂₀.

Figure S5. SHG measurements of Na₂Cd₇B₈O₂₀.

Table S1. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²× 10³) for Na₂Cd₇B₈O₂₀. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	x/a	y/b	z/c	Ueq	occ
Na(1)/Cd(1)	1995(1)	1433(1)	-3227(1)	13(1)	0.276/0.724
Na(2)/Cd(2)	1509(1)	1788(1)	-1220(2)	7(1)	0.456/0.544
Na(3)/Cd(3)	2734(1)	247(1)	9857(4)	7(1)	0.393/0.607
Na(4)/Cd(4)	1879(1)	2187(1)	3573(4)	7(1)	0.375/0.625
Cd(5)	1798(1)	918(1)	954(3)	17(1)	1
Cd(6)	1202(1)	1004(1)	-2734(3)	14(1)	1
Cd(7)	709(1)	590(1)	1654(3)	12(1)	1
Cd(8)	1081(1)	171(1)	6554(3)	16(1)	1
Cd(9)	924(1)	1493(1)	-7660(3)	12(1)	1
Cd(10)	124(1)	934(1)	944(3)	12(1)	1
Cd(11)	323(1)	1433(1)	-3712(3)	20(1)	1
Cd(12)	2349(1)	630(1)	5194(3)	12(1)	1
Na(5)	0	0	3300(80)	123(7)	1
Na(6)	3326(3)	68(3)	4540(70)	142(6)	1
B(1)	495(3)	151(2)	6880(50)	13(3)	1
B(2)	1283(3)	2215(2)	4690(50)	10(3)	1
B(3)	1341(3)	553(2)	2610(40)	10(3)	1
B(4)	2984(3)	635(2)	13770(50)	12(3)	1
B(5)	1777(3)	457(2)	5890(50)	11(3)	1
B(6)	1509(3)	1328(2)	-6060(50)	11(3)	1
B(7)	3433(3)	544(2)	10300(40)	8(3)	1
B(8)	2126(3)	200(3)	9160(50)	14(3)	1
B(9)	2218(3)	1870(2)	-930(50)	9(3)	1
B(10)	662(3)	1049(2)	-3530(50)	10(3)	1
B(11)	2335(3)	1093(2)	1940(50)	9(3)	1
B(12)	148(3)	431(2)	-1380(50)	12(3)	1
O(1)	2311(2)	360(2)	9840(30)	10(2)	1

O(2)	806(2)	849(2)	-3480(30)	16(2)	1
O(3)	2774(2)	520(2)	14730(30)	15(2)	1
O(4)	786(2)	1251(2)	-2730(30)	15(2)	1
O(5)	1897(2)	660(2)	5760(30)	14(2)	1
O(6)	1471(2)	2055(2)	3990(30)	17(2)	1
O(7)	685(2)	319(2)	6720(30)	14(2)	1
O(8)	1120(2)	443(2)	1620(30)	12(2)	1
O(9)	1963(2)	1918(2)	-1440(30)	18(2)	1
O(10)	1267(2)	1280(2)	-7580(30)	16(2)	1
O(11)	1193(2)	-57(2)	11450(30)	17(2)	1
O(12)	1384(2)	775(1)	1750(30)	11(2)	1
O(13)	2378(2)	877(2)	330(30)	27(3)	1
O(14)	1628(2)	1538(2)	3520(30)	18(2)	1
O(15)	2851(2)	24(2)	4970(30)	20(2)	1
O(16)	2103(2)	1194(2)	1740(30)	20(2)	1
O(17)	1888(2)	263(2)	7360(30)	16(2)	1
O(18)	3182(2)	503(2)	11790(40)	19(2)	1
O(19)	401(2)	1046(2)	-4190(30)	15(2)	1
O(20)	525(2)	1637(2)	-8290(30)	17(2)	1
O(21)	278(2)	587(2)	590(30)	19(2)	1
O(22)	1634(2)	1160(2)	-4000(30)	14(2)	1
O(23)	1953(2)	2429(2)	-1410(30)	21(2)	1
O(24)	1044(2)	2157(2)	6480(30)	17(2)	1
O(25)	2321(2)	1660(2)	-1570(30)	15(2)	1
O(26)	2375(2)	2056(2)	300(40)	27(3)	1
O(27)	1050(2)	1753(2)	-12310(30)	13(2)	1
O(28)	1527(2)	419(2)	4470(30)	18(2)	1
O(29)	239(2)	210(2)	7790(30)	16(2)	1
O(30)	45(2)	1301(2)	1190(30)	15(2)	1

Table S2. Selected bond distances ((Å)) and angles	(deg)	for Na ₂ Cd ₇ B ₈ O ₂₀ .
-------------------------------------	-----	--------------	-------	--

	· · · · · · · · · · · · · · · · · · ·		
Cd(1)-O(25)	2.217(9)	Cd(12)-O(5)	2.344(9)
Cd(1)-O(16)	2.259(11)	Cd(12)-O(1)#1	2.413(10)
Cd(1)-O(14)#1	2.269(9)	Na(1)-O(25)	2.217(9)
Cd(1)-O(16)#1	2.275(11)	Na(1)-O(16)	2.259(11)
Cd(1)-O(22)	2.469(9)	Na(1)-O(14)#1	2.269(9)
Cd(2)-O(14)	2.258(10)	Na(1)-O(16)#1	2.275(11)
Cd(2)-O(6)#1	2.263(10)	Na(1)-O(22)	2.469(9)
Cd(2)-O(6)	2.368(11)	Na(2)-O(14)	2.258(10)
Cd(2)-O(14)#1	2.386(11)	Na(2)-O(6)#1	2.263(10)
Cd(2)-O(27)#2	2.403(9)	Na(2)-O(6)	2.368(11)
Cd(2)-O(9)	2.463(9)	Na(2)-O(14)#1	2.386(11)
Cd(3)-O(15)	2.193(10)	Na(2)-O(27)#2	2.403(9)
Cd(3)-O(15)#2	2.250(10)	Na(2)-O(9)	2.463(9)
Cd(3)-O(1)	2.276(8)	Na(3)-O(15)	2.193(10)
Cd(3)-O(3)	2.307(10)	Na(3)-O(15)#2	2.250(10)
Cd(3)-O(3)#1	2.370(10)	Na(3)-O(1)	2.276(8)
Cd(3)-O(18)	2.836(10)	Na(3)-O(3)	2.307(10)
Cd(4)-O(23)	2.233(11)	Na(3)-O(3)#1	2.370(10)
Cd(4)-O(23)#2	2.243(10)	Na(3)-O(18)	2.836(10)
Cd(4)-O(6)	2.248(9)	Na(4)-O(23)	2.233(11)
Cd(4)-O(9)#2	2.351(10)	Na(4)-O(23)#2	2.243(10)
Cd(4)-O(9)	2.358(11)	Na(4)-O(6)	2.248(9)
Cd(5)-O(16)	2.273(9)	Na(4)-O(9)#2	2.351(10)
Cd(5)-O(5)	2.280(10)	Na(4)-O(9)	2.358(11)
Cd(5)-O(12)	2.310(9)	Na(5)-O(29)	2.31(2)
Cd(5)-O(22)	2.350(9)	Na(5)-O(29)#5	2.31(2)
Cd(5)-O(5)#1	2.374(10)	Na(5)-O(29)#6	2.55(2)
Cd(5)-O(22)#2	2.375(10)	Na(5)-O(29)#1	2.55(2)
Cd(6)-O(12)	2.234(9)	Na(6)-O(17)#9	2.35(2)
Cd(6)-O(2)	2.251(9)	Na(6)-O(15)	2.46(2)

Cd(6)-O(10)	2.329(11)	Na(6)-O(24)#10	2.48(2)
Cd(6)-O(10)#2	2.401(10)	Na(6)-O(11)#9	2.56(2)
Cd(6)-O(22)	2.444(9)	Na(6)-O(24)#11	2.72(2)
Cd(6)-O(12)#1	2.482(9)	Na(6)-O(18)#1	2.82(2)
Cd(6)-O(4)	2.587(10)	B(1)-O(23)#8	1.357(17)
Cd(7)-O(21)	2.254(10)	B(1)-O(7)	1.392(17)
Cd(7)-O(8)	2.286(9)	B(1)-O(29)	1.398(16)
Cd(7)-O(2)#2	2.293(10)	B(2)-O(11)#4	1.367(17)
Cd(7)-O(7)#1	2.310(10)	B(2)-O(6)	1.369(17)
Cd(7)-O(7)	2.342(10)	B(2)-O(24)	1.413(17)
Cd(7)-O(2)	2.360(10)	B(3)-O(12)	1.353(16)
Cd(8)-O(11)	2.205(10)	B(3)-O(8)	1.354(16)
Cd(8)-O(7)	2.219(8)	B(3)-O(28)	1.390(17)
Cd(8)-O(11)#1	2.260(10)	B(4)-O(3)	1.318(17)
Cd(8)-O(8)	2.317(10)	B(4)-O(20)#13	1.362(17)
Cd(8)-O(8)#2	2.349(10)	B(4)-O(18)	1.445(17)
Cd(8)-O(28)	2.812(5)	B(5)-O(5)	1.345(17)
Cd(9)-O(10)	2.167(9)	B(5)-O(17)	1.365(16)
Cd(9)-O(20)	2.235(9)	B(5)-O(28)	1.393(17)
Cd(9)-O(27)	2.288(9)	B(6)-O(22)	1.372(17)
Cd(9)-O(4)	2.302(9)	B(6)-O(10)	1.377(17)
Cd(9)-O(4)#1	2.335(10)	B(6)-O(14)#1	1.383(17)
Cd(9)-O(27)#2	2.454(9)	B(7)-O(27)#13	1.339(16)
Cd(10)-O(21)	2.183(10)	B(7)-O(24)#10	1.384(16)
Cd(10)-O(30)	2.195(9)	B(7)-O(18)	1.405(16)
Cd(10)-O(19)#2	2.275(9)	B(8)-O(15)#3	1.346(17)
Cd(10)-O(19)	2.342(10)	B(8)-O(1)	1.357(17)
Cd(10)-O(25)#7	2.365(10)	B(8)-O(17)	1.422(17)
Cd(10)-O(25)#12	2.371(10)	B(9)-O(9)	1.352(16)
Cd(11)-O(20)	2.218(10)	B(9)-O(25)	1.362(16)
Cd(11)-O(19)	2.313(9)	B(9)-O(26)	1.418(16)
Cd(11)-O(30)	2.325(10)	B(10)-O(19)	1.365(17)

Cd(11)-O(30)#1	2.371(10)	B(10)-O(4)	1.372(16)
Cd(11)-O(20)#2	2.423(11)	B(10)-O(2)	1.391(16)
Cd(11)-O(13)#12	2.606(12)	B(11)-O(16)	1.336(16)
Cd(11)-O(4)	2.638(10)	B(11)-O(30)#10	1.386(16)
Cd(12)-O(13)	2.196(11)	B(11)-O(13)	1.397(17)
Cd(12)-O(1)	2.242(9)	B(12)-O(21)	1.320(18)
Cd(12)-O(13)#2	2.268(11)	B(12)-O(29)#1	1.408(16)
Cd(12)-O(3)#1	2.291(9)	B(12)-O(26)#12	1.437(17)
O(23)#8-B(1)-O(7)	122.1(12)	O(27)#13-B(7)-O(24)#10	124.1(12)
O(23)#8-B(1)-O(29)	118.0(12)	O(27)#13-B(7)-O(18)	125.3(12)
O(7)-B(1)-O(29)	119.9(12)	O(24)#10-B(7)-O(18)	110.7(11)
O(11)#4-B(2)-O(6)	124.9(12)	O(15)#3-B(8)-O(1)	125.4(13)
O(11)#4-B(2)-O(24)	113.2(11)	O(15)#3-B(8)-O(17)	114.5(12)
O(6)-B(2)-O(24)	121.7(11)	O(1)-B(8)-O(17)	120.1(12)
O(12)-B(3)-O(8)	123.1(12)	O(9)-B(9)-O(25)	123.1(12)
O(12)-B(3)-O(28)	121.8(12)	O(9)-B(9)-O(26)	115.7(11)
O(8)-B(3)-O(28)	115.0(11)	O(25)-B(9)-O(26)	121.2(11)
O(3)-B(4)-O(20)#13	127.0(13)	O(19)-B(10)-O(4)	120.3(12)
O(3)-B(4)-O(18)	115.0(12)	O(19)-B(10)-O(2)	121.1(11)
O(20)#13-B(4)-O(18)	117.8(12)	O(4)-B(10)-O(2)	118.5(11)
O(5)-B(5)-O(17)	124.0(12)	O(16)-B(11)-O(30)#10	121.3(12)
O(5)-B(5)-O(28)	123.6(12)	O(16)-B(11)-O(13)	121.9(12)
O(17)-B(5)-O(28)	112.4(11)	O(30)#10-B(11)-O(13)	116.8(11)
O(22)-B(6)-O(10)	118.0(12)	O(21)-B(12)-O(29)#1	125.1(12)
O(22)-B(6)-O(14)#1	118.9(12)	O(21)-B(12)-O(26)#12	123.8(12)
O(10)-B(6)-O(14)#1	123.1(12)	O(29)#1-B(12)-O(26)#12	109.8(11)

Symmetry transformations used to generate equivalent atoms:

#1 x,y,z-1 #2 x,y,z+1 #3-x+
$$1/2$$
,-y,z+ $1/2$

- #4 -x+1/4,y+1/4,z-3/4 #5 -x,-y,z
- #6 -x,-y,z-1 #7 x-1/4,-y+1/4,z+3/4
- #8 -x+1/4,y-1/4,z+3/4 #9 -x+1/2,-y,z-1/2

 $\#10 \ x + 1/4, -y + 1/4, z + 1/4 \quad \#11 \ x + 1/4, -y + 1/4, z - 3/4$

#12 x-1/4,-y+1/4,z-1/4 #13 x+1/4,-y+1/4,z+9/4

Fable S3. Calculation of local dipole moments	s for Na ₂ Cd ₇ B ₈ O ₂₀ ,	, Cd ₂ B ₂ O ₅ and	Cd ₄ BiO(BO ₃) ₃ .
--	--	---	--

Compounds	Species			Dipole moment			
			x(a)	y(b)	z(c)	debye	
$Na_2Cd_7B_8O_{20}$	BO ₃	B(10)O ₃	0.26	-0.04	0.68	0.73	
		B(6)O ₃	0.18	-0.44	0.48	0.68	
		B(11)O ₃	0.91	-0.23	-0.16	0.95	
	B_3O_7	B(9)O ₃	0.04	-1.10	0.19	1.11	
		B(12)O ₃	-2.26	-2.65	1.46	3.78	
		B(1)O ₃	-0.64	0.07	-0.19	0.67	
		B_3O_7	-2.86	-3.68	1.46	4.88	
		B(3)O ₃	0.30	-1.25	-0.11	1.29	
		B(5)O ₃	-0.87	-1.59	-0.22	1.82	
		B(8)O ₃	-1.37	-0.28	-0.94	1.68	
		B_3O_7	-1.93	-3.12	-1.27	3.88	
		B(4)O ₃	0.97	-1.06	-1.82	2.32	
		B(7)O ₃	-0.88	-2.04	0.11	2.22	
		B(2)O ₃	-1.12	-0.73	1.16	1.77	
		B_3O_7	-1.02	-3.83	-0.54	4.00	
	NaO ₄	Na(5)O ₄	0	0	8.57	8.57	
	NaO ₆	$Na(6)O_6$	0.17	6.26	2.28	6.66	
	Na/CdO ₆	Na(2)/Cd(3)O ₆	2.28	-2.37	-1.28	3.52	
		Na(3)/Cd(3)O ₆	3.58	5.23	1.38	6.48	
	Na/CdO ₅	Na(1)/Cd(1)O ₅	-1.39	6.46	2.17	6.95	
		Na(4)/Cd(4)O ₅	-1.95	2.77	0.46	3.42	
	CdO ₆	$Cd(5)O_6$	2.85	1.95	1.65	3.83	

		Cd(7)O ₆	-1.42	-3.26	-1.02	3.69
		$Cd(8)O_6$	-2.15	6.07	-0.90	6.50
		$Cd(9)O_6$	0.78	-1.36	-0.78	1.75
		Cd(10)O ₆	-1.21	0.98	0.05	1.56
		Cd(12)O ₆	0.08	0.17	0.18	0.26
	CdO ₇	Cd(6)O ₇	-1.41	4.85	-1.38	5.23
		Cd(11)O ₇	0.57	-3.45	0.77	3.59
$Cd_2B_2O_5$	CdO_6	$Cd(1)O_6$	-4.74	-2.33	-0.14	4.69
		$Cd(2)O_6$	3.12	5.18	2.47	5.76
		$Cd(3)O_6$	-4.08	-4.54	-2.22	5.59
		$Cd(4)O_6$	4.59	1.72	0.11	4.45
Cd ₄ BiO(BO ₃) ₃	CdO ₆	$Cd(1)O_6$	1.18	-1.67	-0.30	2.10
	CdO ₇	Cd(2)O ₇	-3.19	2.84	-1.95	4.45