Supplementary Information

Oxide-Oxide Nanojunctions in coaxial SnO_2/TiO_2 , SnO_2/V_2O_3 and $SnO_2/(Ti_{0.5}V_{0.5})_2O_3$ Nanowire Heterostructures

Reza Zamani,^{*a,b*} Raquel Fiz,^{*c*} Jun Pan,^{*c*} Thomas Fischer,^{*c*} Sanjay Mathur, *^{*c*} Joan Ramon Morante*^{*b,d*} and Jordi Arbiol *^{*a,e*}

^a Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, E-08193 Bellaterra, CAT, Spain; E-mail: <u>arbiol@icrea.cat</u>

^b Catalonia Institute for Energy Research (IREC), E-08930Sant Adrià del Besòs, CAT, Spain; E-mail: jrmorante@irec.cat

^c Institute of Inorganic Chemistry, University of Cologne, Cologne, Germany; E-mail: <u>sanjay.mathur@uni-koeln.de</u>

^d Departament d'Electrònica, Universitat de Barcelona, E-08028 Barcelona, CAT, Spain

^e Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, CAT, Spain

CONTENTS Page

S1. Atomic simulation of the interfaces between rutile SnO ₂ NW core and different shells: (a) Ti ₂ O, (b) Ti ₂	₂ O ₃ , (c
TiO2 rutile and (d) TiO ₂ anatase. (Figure S1)	2
S2. Formation mechanism of SnO2- based heterostructures. (Figure S2)	2
S3. In-situ mass spectrometical analysis of the gas phase during the deposition process. (Figure S3)	3

S1. Atomic simulation of the interfaces between rutile $SnO_2 NW$ core and different shells: (a) Ti_2O_3 , (b) Ti_2O_3 , (c) TiO2 rutile and (d) TiO₂ anatase.

Figure S1. Atomic simulation of the interfaces between rutile SnO_2 NW core and different shells: (a) Ti_2O_3 , (b) Ti_2O_3 , (c) TiO2 rutile and (d) TiO₂ anatase. Top views show the $[10-10]_{Ti2O}$ // $[0-11]_{SnO2}$ in the case of Ti_2O on SnO_2 , $[11-20]_{Ti2O3}$ // $[0-11]_{SnO2}$ zone axis in the case of Ti_2O_3 on SnO_2 and $[0-11]_{TiO2}$ // $[0-11]_{SnO2}$ in the case of TiO_2 rutile and anatase on SnO_2 . Front views are visualized along the $[0001]_{Ti2O/Ti2O3}$ // $[100]_{SnO2}$ zone axis in the case of Ti_2O_3 and Ti_2O_3 on SnO_2 , and along the $[100]_{TiO2}$ // $[100]_{SnO2}$ zone axis in the case of TiO_2 rutile and anatase on SnO_2 . Finally, the side view corresponds to the $[-12-10]_{Ti2O}$ // $[011]_{SnO2}$, $[-1100]_{Ti2O3}$ // $[011]_{SnO2}$ and $[011]_{TiO2}$ anat/rutile // $[011]_{SnO2}$ directions. In each case mismatch percentage is indicated under the model.

S2. Formation mechanism of SnO2- based heterostructures.

Figure S2. Formation mechanism of SnO2- based heterostructures. While titania shells degrade, vanadia overlayers show improved epitaxial relationships and thermochemical stability.

S3. In-situ mass spectrometical analysis of the gas phase during the deposition process.

Figure S3. *In-situ* mass spectrometical analysis of the gas phase during the deposition process of $Ti(OPr^{i})_{4}$: m/z=2 (H₂⁺), 18 (H₂O⁺), 15 (CH₃⁺), 42 (C₃H₅⁺), 45 (C₂H₆O⁺), 59 (C₃H₇O⁺).