Hollow magnetic hydroxyapatite microspheres with hierarchically mesoporous microstructure for pH-responsive drug delivery

Kaili Lin,^{*,a} Lei Chen^a, Peiyi Liu^b, Zhaoyong Zou^a, Meili Zhang^a, Yuhui Shen^b, Yuqin Qiao^a, Xuanyong Liu^a and Jiang Chang^{*,a}

^aState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P.R. China.

^bDepartment of Orthopaedics, Shanghai Institute of Orthopaedics & Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.

Fax: 86 21 52413903; Tel: 86 21 52412810; E-mail: lklsic@mail.sic.ac.cn (K. Lin); jchang@mail.sic.ac.cn (J. Chang)

Fig. S1. XRD for CaCO₃/Fe₃O₄ hollow microspheres with 50 wt.% Fe₃O₄ component.

Fig. S2 XRD patterns of the samples with similar composite ratio directly mixed by the Fe_3O_4 and the hydrothermally syntheszed HAp powders.

Fig. S3. Morphology image of the raw Fe₃O₄ nanoparticles.

Fig. S4. TEM for CaCO₃/Fe₃O₄ hollow microspheres with 25 wt.% Fe₃O₄ component synthesized using very dilute solutions ([CaCl₂]=0.002 M and [Na₂CO₃]=0.002 M) (A) and hydrothermal transformed to the hollow magnetic HAp microspheres (B).

Fig. S5. The concentrations of the Ca²⁺ ion released from sample S3 in different pH PBS without refreshing the soaking medium.

Fig. S6. The percentage of the dissolved HAp from magnetic HAp hollow microspheres (sample S3) and the control HAp nanoparticles (sample S0) after cumulative drug release in different pH PBS up to 48 h.