Table S1 Selected bond lengths (Å) for complexes 1–11

	1	2	3	4	5	6	7	8	9	10	11
Ln(1)-O(1)2	.486(2)2	.523(3)2	.469(3)2	.481(2)2	.467(3)2.	.458(3)2	.446(3)2	.385(3)2	.382(3)2.	365(3)2	.383(5)
Ln(1)-O(2)2	.532(2)2	.479(3)2	.491(3)2	.496(3)2	.465(3)2.	.459(3)2	.450(4)2	.387(3)2	.374(3)2.	374(3)2	.399(5)
Ln(1)-O(3)2	.492(2)2	.523(3)2	.514(3)2	.443(2)2	.422(3)2.	.405(3)2	.477(4)2	.436(3)2	.464(3)2.	424(3)2	.357(4)
Ln(1)-O(4)2	.541(2)2	.583(3)2	.504(3)2	.424(2)2	.413(3)2.	.417(2)2	.443(3)2	.437(3)2	.420(3)2.	406(3)2	.345(4)
Ln(1)-O(5)2	.597(2)2	.519(3)2	.448(3)2	.484(2)2	.469(3)2.	.461(3)2	.399(3)2	.467(3)2	.430(3)2.	411(3)2	.353(6)
Ln(1)-O(6)2	.537(2)2	.471(3)2	.469(3)2	.475(2)2	.426(3)2.	.418(3)2	.454(3)2	.428(3)2	.421(3)2.	455(3)2	.439(6)
Ln(1)-O(7)2	.572(2)2	.505(3)2	.511(3)2	.472(2)2	.486(3)2	.459(3)2	.404(3)2	.448(3)2	.384(3)2.	448(4)2	.448(5)
Ln(1)-O(8)2	.520(2)2	.548(3)2	.495(3)2	.438(3)2	.464(3)2.	.484(3)2	.398(3)2	.390(3)2	.445(4)2.	372(4)2	.395(5)
Ln(1)-O(9)2	.513(2)2	.488(3)2	.550(4)2	.515(3)2	.488(4)2.	.486(3)2	.468(4)2	.450(3)2	.443(4)2.	421(4)2	.405(6)

	12	13	14	15	16
Ln(1)–O(3)	2.340(4)	2.328(4)	2.348(5)	2.363(8)	2.359(5)
Ln(1)-O(2)(4)	2.360(4)	2.396(5)	2.383(5)	2.325(8)	2.320(5)
Ln(1)–O(1)#1	2.395(4)	2.349(5)	2.325(4)	2.297(7)	2.293(4)
Ln(1)–O(9)	2.406(5)	2.401(5)	2.392(5)	2.369(9)	2.360(5)
Ln(1)–O(10)	2.412(5)	2.408(6)	2.387(5)	2.373(8)	2.352(5)
Ln(1)-N(4)(3)	2.431(4)	2.424(5)	2.423(5)	2.405(9)	2.387(6)
Ln(1)-N(1)#2	2.596(5)	2.591(5)	2.576(5)	2.566(10)	2.558(5)
Ln(1)-O(5)(7)	2.641(3)	2.635(4)	2.629(4)	2.631(7)	2.611(4)
Ln(2)-O(7)#3	2.361(4)	2.705(4)	2.344(4)	2.335(8)	2.437(5)
Ln(2)-O(4)(2)	2.402(4)	2.392(4)	2.396(4)	2.357(7)	2.356(4)
Ln(2)–O(11)	2.464(5)	2.453(5)	2.437(5)	2.415(9)	2.410(5)
Ln(2)–O(8)	2.485(4)	2.509(4)	2.467(4)	2.445(8)	2.314(5)
Ln(2)–O(6)	2.517(4)	2.347(4)	2.497(4)	2.480(8)	2.463(5)
Ln(2)-N(3)(4)	2.528(5)	2.520(6)	2.509(5)	2.501(10)	2.480(6)
Ln(2)–O(6)#4(8)	2.547(3)	2.527(4)	2.528(4)	2.518(7)	2.520(4)
Ln(2)–N(2)	2.548(5)	2.531(5)	2.520(5)	2.514(10)	2.483(5)
Ln(2)–O(5)	2.715(4)	2.466(5)	2.710(4)	2.697(7)	2.709(4)

Table S2 Selected bond lengths (Å) for complexes 12–16

D–H···A	D–H / Å	H···A∕ Å	D…A/Å	<d-h···a th="" °<=""></d-h···a>
		1		
07–H7A···O8 ^a	0.820	2.229	164.94	3.028
O8−H8A···O6 ^b	0.820	1.940	154.73	2.704
09–H9C…O4 ^с	0.850	2.306	119.07	2.819
09–H9C…O3 ^ч	0.850	2.553	134.28	3.205
OW2–HW2A····OW1	0.850	1.939	141.50	2.657
OW2–HW2A···OW1 °	0.850	2.083	152.50	2.864
$OW2-HW2B\cdots O7^{-1}$	0.850	2.110	160.61	2.925
OW1–HW1A····OW2 ^e	0.850	2.250	129.26	2.864
	0.050	2	1 - 1	2 < 2 7
07–H7C…03 ⁵	0.850	1.918	151.65	2.697
O8–H8A···OW1	0.820	2.059	168.63	2.868
08–H8A…07 ^a	0.820	2.615	111.73	3.017
08–H8B…O4 ^a	0.850	2.037	167.70	2.873
$O9-H9A\cdotsO1^{n}$	0.820	2.169	137.08	2.826
O9–H9C····O2 ^d	0.850	2.652	123.30	3.199
OW1–HW1B····O7 ^a	0.850	2.299	132.01	2.937
OW1–HW1C····OW2 ⁱ	0.850	1.409	125.86	2.028
OW2–HW2A…OW2 ^j	0.850	1.340	149.10	2.115
OW2–HW2A····OW1 ^k	0.850	1.420	124.66	2.028
OW3–HW3B····OW2 ^a	0.850	2.284	144.78	3.019
OW3–HW3C····O8 ⁱ	0.850	2.204	140.54	2.911
		3		
$O9-H9B\cdots OW1^{-1}$	0.850	2.099	136.19	2.776
O9–H9C····OW1 ^m	0.850	2.284	125.36	2.861
$OW1-HW1B\cdots O4^{n}$	0.850	2.358	139.04	3.051
OW1–HW1C···OW3 °	0.850	2.609	143.96	3.334
OW1–HW1C····O3 °	0.850	2.640	112.84	3.072
OW2–HW2B····OW1 ^m	0.850	2.316	153.34	3.099
OW2–HW2B····OW3 ^p	0.850	2.383	114.43	2.842
OW2–HW2C····O8	0.850	2.097	146.37	2.844
OW3–HW3A····OW2 ^q	0.850	2.163	136.66	2.842
OW3–HW3B····O7 1	0.850	2.192	157.27	2.994
		4		
O9–H9A···OW1 $^{\rm m}$	0.850	2.460	111.04	2.877
$O9-H9C\cdots OW1^{-1}$	0.850	2.204	122.83	2.759
OW1-HW1A····O2 °	0.850	2.237	156.23	3.035
OW1–HW1A····O1 ⁿ	0.850	2.373	138.54	3.062
OW1–HW1B····OW2 °	0.850	2.389	132.38	3.028
OW1–HW1B····O4 ^r	0.850	2.654	148.39	3.407
OW2–HW2A····O6 ^q	0.850	2.038	157.09	2.840
OW2–HW2B····OW2 ^s	0.850	2.623	150.83	3.391

Table S3 Important hydrogen bond interactions in complexes $1-11^{\#}$

OW3 HW3AOW2	0.850	2 1 2 5	136.40	2812
$OW3 HW3P O5^{1}$	0.850	2.155	157.43	2.012
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0.050	2.109	157.45	2.712
09–H9C…OW2	0.850	2.316	122.21	2.861
$OW1-HW1A\cdots O2^{t}$	0.850	2.430	121.11	2.960
OW2-HW2BOW3	0.850	2.486	121.73	3.020
OW3-HW3AO1	0.850	2.227	126.92	2.821
OW3-HW3BOW1	0.850	1 967	166 36	2.821
	0.050	6	100.50	2.000
09–Н9В…ОW3 ^ј	0.850	2.276	124.73	2.847
O9−H9C…OW3	0.850	2.073	137.06	2.757
OW1–HW1B····O2 ^j	0.850	2.070	147.21	2.822
OW1–HW1B····O3 ^j	0.850	2.540	132.43	3.176
OW1–HW1C···OW2 ^u	0.850	2.000	161.07	2.818
$OW2-HW2B\cdots O1^{-1}$	0.850	2.129	165.94	2.961
OW3–HW3A····O8 ^u	0.850	2.288	140.37	2.992
OW3–HW3A····O7 ^p	0.850	2.347	147.41	3.097
OW3–HW3B…OW2 ^u	0.850	2.478	157.10	3.278
		7		
О9–Н9В…ОW3 ^v	0.850	2.292	124.73	2.863
O9–H9C…OW3	0.850	2.071	136.94	2.754
OW1–HW1C····O1 ^w	0.850	2.233	142.43	2.953
OW2–HW2B····O8 ^x	0.850	2.322	167.84	3.158
OW2–HW2C····OW2 ^y	0.850	2.542	151.47	3.313
OW3–HW3A····O3 ^z	0.850	2.220	147.05	2.969
OW3–HW3A…O4 °	0.850	2.319	153.86	3.104
OW3–HW3B…OW1 ^z	0.850	2.457	157.13	3.257
OW3–HW3B…OW2 ^{aa}	0.850	2.462	121.62	2.997
	8	8		
O9–H9B…OW1	0.850	2.289	124.52	2.858
$O9-H9C\cdots OW1^{1}$	0.850	2.062	137.18	2.747
OW1–HW1A····O5 ^x	0.850	2.109	172.92	2.954
OW1–HW1A…O6 ^{bb}	0.850	2.600	119.86	3.112
OW1-HW1B····OW2	0.850	2.349	130.18	2.969
OW1–HW1B····OW3 ^q	0.850	2.568	139.90	3.264
OW2-HW2A…OW1	0.850	2.330	132.24	2.969
OW2-HW2A····O1	0.850	2.598	123.08	3.144
OW2–HW2B····O4	0.850	2.286	122.83	2.838
OW3–HW3B…OW1 ^p	0.850	2.547	142.75	3.264
	ļ	•		
O9–H9B…OW3	0.850	2.059	136.73	2.741
O9–H9C···OW3 ¹	0.850	2.294	124.16	2.859
OW1-HW1B····O5	0.850	2.073	148.77	2.835
OW1–HW1C···OW1 ^w	0.850	2.553	157.40	3.354

OW2–HW2A····O6 ^{cc}	0.850	2.379	121.69	2.916				
OW3–HW3B…OW1 ¹	0.850	2.398	120.22	2.920				
OW3–HW3B…OW2	0.850	2.462	157.26	3.263				
OW3–HW3C····O3 ^{bb}	0.850	2.186	147.95	2.942				
OW3–HW3C····O4 ^x	0.850	2.342	152.56	3.122				
10								
O9−H9B…OW1	0.850	2.272	125.55	2.851				
O9−H9C····OW1 ^{dd}	0.850	2.082	137.15	2.766				
OW1–HW1A····O5 ^u	0.850	2.365	156.42	3.163				
OW1–HW1A····O6 ^q	0.850	2.503	113.05	2.942				
OW1–HW1B…OW3 ^{ee}	0.850	2.422	151.33	3.193				
OW2–HW2A…OW1	0.850	2.236	140.69	2.943				
OW2–HW2A····O2	0.850	2.546	125.16	3.114				
OW2–HW2B····O3	0.850	2.194	131.97	2.834				
OW3–HW3B…O1 ^{ff}	0.850	2.370	118.40	2.874				
		11						
O9–H9A····OW2 ^{gg}	0.820	2.296	127.13	2.866				
OW1–HW1B…O1 ^{hh}	0.850	2.306	132.60	2.948				
OW2–HW2A…OW1 ⁱⁱ	0.850	2.373	153.55	3.157				
OW2–HW2C····O7 ⁱⁱ	0.850	2.225	140.86	2.934				
OW2–HW2C····O8 °	0.850	2.484	140.06	3.183				
OW3-HW3D····O2	0.850	2.082	148.03	2.839				
OW3–HW3A…OW1 ^x	0.850	2.213	116.68	2.704				
OW3–HW3A…OW2 ^{gg}	0.850	2.218	149.79	2.983				

[#]Symmetry transformations used to generate equivalent atoms: (a) x, -y+1/2, z+1/2; (b) -x+2, y+1/2, -z+3/2; (c) -x+2, y-1/2, -z+3/2; (d) x, -y-1/2, z-1/2; (e) -x+1, -y, -z+2; (f) -x+1, y-1/2, -z+3/2; (g) -x+1, y+1/2, -z+1/2; (h) -x+1, y-1/2, -z+1/2; (i) -x, y-1/2, -z+1/2; (j) -x, -y+1, -z; (k) -x, y+1/2, -z+1/2; (l) -x, -y+1, -z+1; (m) x, y, z-1; (n) x-1/2, -y+1/2, z+1/2; (o) -x+1/2, y-1/2, -z+3/2; (p) -x+1/2, y-1/2, -z+1/2; (q) -x+1/2, y+1/2, -z+1/2; (r) x, y, z+1; (s) -x, -y+2, -z+1; (t) x+1/2, -y+3/2, z-1/2; (u) x-1/2, -y+1/2, z-1/2; (v) -x+1, -y+1, -z+2; (w) -x+1, -y+1, -z+1; (x) -x+1/2, y+1/2, -z+3/2; (y) -x+1, -y+2, -z+1; (z) x+1/2, -y+1/2, z+1/2; (aa) x+1/2, -y+3/2, z+1/2; (bb) x-1/2, -y+3/2, z-1/2; (cc) -x, -y+1, -z+2; (dd) -x, -y, -z; (ee) -x+1, -y, -z; (ff) x+1/2, -y-1/2, z-1/2; (gg) -x, -y, -z+1; (hh) -x, -y, -z+2; (ii) x-1/2, -y-1/2, z-1/2.

Tuble 54 Important nyurogen bond interactions in complexes 12-10							
D–H···A	D–H / Å	H…A/ Å	D…A/Å	$<$ D $-$ H \cdots A/ °			
	0.820	12	110 72	2756			
O_{9} -H9B····O4	0.820	2.230	119.72	2.730			
09–H9B····03	0.820	2.028	121.84	3.139			
$O10-H10A\cdots O8$	0.820	1.954	147.52	2.682			
OII-HIIA····OW2	0.820	2.401	163.35	3.195			
OII-HIIA····OW2°	0.820	2.559	117.64	3.028			
O11–H11B…N3 ^a	0.850	2.469	160.92	3.284			
OW1–HW1A···O10	0.850	2.415	161.93	3.234			
OW1–HW1A····O2 ^b	0.850	2.560	116.15	3.032			
OW2–HW2B····O11 ^e	0.850	2.401	131.04	3.028			
$OW2-HW2C\cdots O7^{t}$	0.850	2.422	160.11	3.234			
OW3–HW3A····O9 ^e	0.850	2.135	123.95	2.704			
		13					
O9−H9B…O5	0.960	2.030	121.21	2.658			
010–Н10А…О2 ^в	0.820	2.468	167.94	3.274			
O10-H10B…O4	0.960	1.820	164.54	2.757			
О10–Н10В…О3 ^g	0.960	2.536	117.25	3.096			
O11–H11A…OW2 ^h	0.820	2.326	167.78	3.132			
O11-H11A…OW2	0.820	2.435	115.95	2.889			
O11–H11B…N4 ⁱ	0.960	2.332	159.74	3.250			
OW1–HW1B····O10 ^h	0.850	2.045	125.12	2.628			
OW2–HW2A…OW2 ^h	0.850	1.395	141.35	2.126			
OW2–HW2A…OW2 ^j	0.850	2.380	121.13	2.912			
OW2–HW2A····OW2 ^k	0.850	2.502	110.64	2.912			
OW3–HW3A····O4 ^h	0.850	2.485	155.37	3.276			
14							
O9–H9A ···· O 4 ¹	0.850	2.457	161.35	3.274			
$O9-H9B\cdots O2^{1}$	0.850	1.914	162.84	2.738			
O10–H10A…OW1 ^m	0.850	2.544	145.17	3.278			
O10-H10B…O8	0.850	1.977	137.70	2.667			
O11–H11A…OW1	0.850	2.208	126.16	2.795			
O11–H11A…O5	0.850	2.620	113.26	3.057			
O11–H11B····OW2 ⁿ	0.850	2.373	139.58	3.070			
OW1–HW1A…OW2	0.850	2.634	123.45	3.183			
OW1–HW1B····O2 °	0.850	2.564	140.75	3.267			
OW1–HW1B…O1 °	0.850	2.637	157.17	3.436			
$OW2-HW2A\cdots O7^{n}$	0.850	2.576	133.77	3.223			
OW2-HW2AOW1	0.850	2.653	121.67	3.183			
$OW3-HW3AO9^{1}$	0.850	2.245	110.55	2.665			
0,10,11,011,00	0.000	15	110.00	2.000			
<u>O9-H9AOW2</u> 0.820 2.226 115.80 2.687							
O9–H9B…O2 °	0.960	2.175	116.19	2.737			

Table S4 Important hydrogen bond interactions in complexes $12-16^{\#}$

О9–H9B…О1 [°]	0.960	2.548	118.37	3.120
O11–H11A····OW1 ^p	0.820	2.219	141.73	2.908
O11–H11B…N3 ^p	0.960	2.286	160.59	3.207
$OW2-HW2A\cdots O9^{1}$	0.850	2.232	113.48	2.687
OW2–HW2B····O9 ⁿ	0.850	2.145	121.28	2.687
OW3–HW3B…O11 °	0.850	2.323	113.93	2.778
OW3–HW3B····O3 °	0.850	2.441	112.032.870	
	16			
O9−H9B…O7	0.850	2.125	122.78	2.682
O10–H10A…O3 ^q	0.820	2.478	166.54	3.281
O10–H10B…O2	0.850	1.925	162.48	2.747
O10–H10B…O1 ^q	0.850	2.647	117.20	3.128
O11–H11B…N3 ^r	0.820	2.416	160.98	3.203
O11-H11C…OW2	0.850	2.034	142.93	2.760
OW1–HW1B····O10 ^q	0.850	2.194	117.96	2.699
OW2–HW2A····O2 ^h	0.850	2.518	154.41	3.305
OW3–HW3B····O8 ^h	0.850	2.638	126.17	3.214
OW3–HW3C····OW3 ^h	0.850	1.404	114.26	1.917
OW3–HW3C····O11 ^h	0.850	2.407	137.93	3.091

[#] Symmetry transformations used to generate equivalent atoms: (a) x-1/4, -y+7/4, -z-1/4; (b) x-1/4, -y+5/4, z-1/4; (c) -x+7/4, y+3/4, z-1/4; (d) -x+2, -y+1, -z-1; (e) x-3/4, -y+7/4, z+1/4; (f) -x+2, -y+1/2, z; (g) -x+3/4, y-3/4, -z+3/4; (h) -x, -y+3/2, z; (i) -x, -y+2, -z; (j) -x+3/4, y-3/4, -z-1/4; (k) x+3/4, -y+3/4, -z-1/4; (l) x+1/4, -y+5/4, -z+1/4; (m) -x+5/4, y+1/4, z+1/4; (n) -x+1, -y+3/2, z; (o) y-1/4, -x+5/4, -z+1/4; (p) -x+1/2, -y+3/2, -z-1/2; (q) -y+3/4, x+3/4, -z+3/4; (r) -x, -y+1, -z.

Fig. S1 UV - Vis absorption spectrum of the oxalic acid ligand in solid-state.

Fig. S2 UV–Vis absorption spectrum of the imidazole–4,5–dicarboxylate ligand in solid–state.

Fig. S3 The structural unit of $[(H_3IMDC)_2 \cdot (PZ)_{0.5} \cdot (H_2O)]$ with labeling scheme and 50% thermal ellipsoids.

Fig. S4 PXRD patterns of 4, 5 and 7 compared with a simulated pattern.

Fig. S5 PXRD patterns of 12, 14, 15 and 16 compared with a simulated pattern.

Fig. S6 The ¹³C NMR spectrum of L-proline.

Fig. S7 The ¹³C NMR spectrum of the reaction product.