Effect of water on size-controllable synthesis of mesoporous Fe_3O_4 microspheres and their applications in waste water treatment

Dunpu Zhang, Chunhua Lu*, Yaru Ni, Zhongzi Xu, Wenbin Zhang

State Key Laboratory of Materials-Orient Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009, PR China

Author information

Corresponding author:

*Chunhua Lu, E-mail address: njlch2005@163.com, Tel.:+86 25 83587252, Fax: +86

25 83587220.

Fig. S1 XPS spectra of the typical Fe_3O_4 with E/W=50

Fig. S2 XRD patterns and photography of precursors prepared with different

treatment time.

Fig. S3 UV-vis absorption spectra at different time for Fe₃O₄ microspheres with

particle size of: (a) 68 nm, (b) 240 nm, (c) 553 nm.

Fig. S4 Calculated adsorption capacities for Fe₃O₄ microspheres with different size: (a)

553 nm; (b) 240 nm; (c) 68 nm.

Dosage of Fe ₃ O ₄ / g L ⁻¹	Concentration of CR solvent / mg L ⁻¹	Adsorption capacity / mg g ⁻¹
2	120	41.83
2	100	42.18
2	90	40.51
2	80	35.54
2	70	32.94
2	60	29.48

Table S1 Equilibrium adsorption capacity for 553 nm Fe_3O_4 microspheres under different concentration of Congo red (CR)

Freundlich model:

Freundlich equation can be expressed as follow:

$$\log q_e = \log K_F + \frac{1}{n} \log c_e \quad (1)$$

Where c_e is equilibrium concentration of CR in solution (mg L⁻¹), q_e is the adsorption capacity of CR adsorbed at equilibrium (mg g⁻¹), K_F is the Freundlich constant (mg^{1-(1/n)} L^{1/n} g⁻¹) and *n* is the heterogeneous factor. The K_F and *n* can be obtained from intercept and slope of the linear plot between $\log c_e$ and $\log q_e$.

Fig. S5 Freundlich isotherm for CR adsorption onto 553 nm Fe₃O₄ microspheres.

Table S2 Adsorption isotherm constants calculated from Freundli	ch mo	del
---	-------	-----

Sample	Freundlich isotherm constants			
	$K_{\rm F}/{\rm mg}^{1-(1/{\rm n})}{\rm L}^{1/{\rm n}}{\rm g}^{-1}$	n	R^2	
553 nm	29.72	8.9	0.8425	

Fig. S6 The UV-vis absorption spectras and color removal efficiencies of the

regenerated Fe_3O_4 microspheres after different cycles.

The Fe₃O₄ microspheres with CR are regenerated by combustion at 400 °C for 1 h under protection of N_2 flow.