Electronic Supplementary Information

From anion complexes to anion coordination polymers (ACPs): assembly with a 1,5-naphthylene bridged bis-bisurea ligand

Jiamin Wang,^{*a,d*} Shaoguang Li,^{*a*} Peiju Yang,^{*a*} Xiaojuan Huang,^{*a*} Xiao-Juan Yang,^{*a*} Biao Wu^{**b,c*}

General

Tetrabutylammonium sulfate ([(Bu)₄N]₂SO₄) (50% water solution) and other tetrabutylammonium salts, p-nitro-phenylisocyanate and 1,5-naphthylisocyanate were purchased from Alfa Aesar and used as received. Tetrabutylammonium terephthalate was prepared according to the literature.¹ ¹H and ¹³C NMR spectra were recorded on a Mercury plus-400 spectrometer at 400 MHz and 100 MHz, respectively, using TMS as an internal standard. All ¹H NMR titrations were performed in DMSO-*d*₆. UV-vis spectra were recorded on an HP845 spectrometer in DMSO. Fluorescence spectra were obtained on a Hitachi F7000 spectrophotometer (1-cm quartz cell). Elemental analyses were performed on a VarioEL instrument from Elementar Analysensysteme GmbH. IR spectra were measured using a Bruker IFS 120HR spectrometer as KBr disks. X-ray powder diffraction data were recorded with an X'Pert PRO instrument. TG analysis was carried out with a Pyris diamond instrument under N₂ atmosphere.

X-ray crystallography

Single crystal X-ray diffraction data were collected on a Bruker SMART APEX II diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). An empirical adsorption correction using SADABS was applied for the data. The structures were solved by direct methods using the SHELXS-97 program. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares on F^2 by the use of the program SHELXL-97, and hydrogen atoms were included in idealized positions with thermal parameters equivalents to 1.2 times those of the atom to which they were attached.

In complex **1**, the sulfate ion is disordered over two positions, with the eight half-occupied O atoms defining the corners of a cube. Besides, C25 atom of the TBA⁺ countercation is disordered and displays unusual thermal parameters. In **2**, N1 atom of the ligand is disordered into two positions with occupancy rates of 60% and 40% and O2 and C38 are possibly disordered. Besides, C50 and C51 atoms of the TBA⁺ cation have been refined isotropically due to their large ADPs. One acetone solvent was removed by SQUEEZE in complex **3** and some atoms (the carbon atoms of TBA⁺ cations and N1, O1 of L) are disordered and display unusual thermal parameters. The SQUEEZE calculations showed a total solvent accessible area volume of 152 Å³ in **3** and the residual electron density amounted to 38 e per unit cell, corresponding to nearly one acetone molecule (about 0.25 acetone per asymmetric unit). In complex **4**, one carbon atom (C29) of the TBA⁺ cation is disordered into two positions with half-occupancy rate each. In complex **5**, C33 and C34 atoms of the TBA⁺ cation are possibly disordered and display large ADPs. In complex **6**, some atoms (C100, C108, C114, C115 and C116 of the TBA⁺ cations) are disordered and display unusual thermal parameters. Crystallographic data are provided in Table S1.

Scheme S1. Synthesis of L: (1) Toluene/THF; (2) THF.

Fig. S1 Powder X-ray diffraction patterns for the anion complexes: as-synthesized (red) and simulated from the single-crystal diffraction data (black), (a) **1**; (b) **2**; (c) **3**; (d) **4**; (e) **5**; (f) **6**; (g) **7**; (h) **8**.

Fig. S2 TGA curves of the ligand L and complexes 1–8 (a–h).

SO ₄ ²⁻ NHd	NHc	NHa	NHb			ull		
AcO NHd	L.	045	NHc	NHaNHb		In	lan	**
BzO ⁻	NHd		NHc	NHa NHb ม		1 Au		it us.
Cŀ			NHd	NHa	NHbNHc	J.w.	her.	
HSO ₄ -						he	hu	_A
NO ₃ -			l	t		Ju	ha	_
Br						Lu	ha	
Ŀ			Å		۱.	Ju	ha	

Fig. S3 ¹H NMR spectra of L (5 mM) in the presence of 2.0 equiv. of various anions (added as TBA⁺ salts, DMSO- d_6 , 400 MHz).

Fig. S4 (a) Job's plot of L with SO_4^{2-} ; (b) the corresponding ¹H NMR spectra (added as TBA⁺ salt, DMSO-*d*₆, 400 MHz).

Fig. S5 ¹H NMR titration of L (5 mM) with AcO⁻ (as TBA⁺ salt) in DMSO- d_6 .

Fig. S6 (a) Job's plot of L with AcO⁻ and possible binding pattern; (b) the corresponding ¹H NMR spectra (added as TBA⁺ salt, DMSO- d_6 , 400 MHz).

Fig. S7 ¹H NMR titration of **L** (5 mM) with BzO⁻ (as TBA⁺ salt) in DMSO- d_6 .

Fig. S8 (a) Job's plot of L with BzO⁻ and possible binding pattern; (b) the corresponding ¹H NMR spectra (added as TBA⁺ salt, DMSO- d_6 , 400 MHz).

Fig. S9 (a) Job's plot of L with Cl⁻ and possible binding pattern; (b) the corresponding ¹H NMR spectra (added as TBA⁺ salts, DMSO- d_6 , 400 MHz).

Fig. S10 ¹H NMR titration of **L** with Cl^{-} (added as TBA⁺ salt, DMSO- d_6 , 400 M Hz).

Fig. S11 ¹H NMR titration of **L** with p-[COO-C₆H₄-COO]²⁻ (added as Na⁺ salt, DMSO- d_6 /H₂O, 400 MHz).

Fig. S12 UV-vis titration of \mathbf{L} (1.0 × 10⁻⁵ M) with anions (as TBA⁺ salts) in DMSO. (a) AcO⁻; (b) BzO⁻; (c) Cl⁻.

Fig. S13 Fluorescence titration of **L** $(5.0 \times 10^{-6} \text{ M})$ with anions (as TBA⁺ salts) in DMSO. (a) AcO⁻; (b) BzO⁻; (c) Cl⁻.

Fig. S14 ¹H NMR titration of L with AcO^{-} (as TBA⁺ salt) in DMSO- d_6 .

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 20:34:45 on 11/22/2012

Ideal data for M, ML and ML2 system. IDEAL DATA TAKEN FROM ACTUAL FIT of JIMMY1.FIT Reactions: M + L = ML (beta1 = K1); M + 2L = ML2 (beta2 = K1K2) Theoretical: k1=3900, k1k2 =11000000 del ML = 9.340, del ML2 = 9.542 File prepared by M.J. Hynes October 22 2000

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

- 1 1 4.21949E+03 1.000E+01 5.537E+02 2.927E+00 BETA1
- 2 1 1.10000E+07 2.000E+00 0.000E+00 0.000E+00 BETA2
- 3 1 9.10236E+00 5.000E-02 3.645E-03 2.754E+00 M SHIFT
- 4 1 9.35357E+00 5.000E-03 6.456E-03 3.252E+00 ML SHIFT
- 5 1 9.60209E+00 1.000E-03 2.948E-03 3.492E+00 ML2 SHIFT

```
0RMS ERROR = 4.16E-03 MAX ERROR = 7.99E-03 AT OBS.NO. 12
```

```
RESIDUALS SQUARED = 2.60E-04
```

RFACTOR = 0.0384 PERCENT

Fig. S15 ¹H NMR titration of L with Cl^- (as TBA⁺ salt) in DMSO- d_6 .

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 20:47:01 on 11/22/2012

Ideal data for M, ML and ML2 system.

IDEAL DATA TAKEN FROM ACTUAL FIT of JIMMY1.FIT

Reactions: M + L = ML (beta1 = K1); M + 2L = ML2 (beta2 = K1K2)

Theoretical: k1=9430, k1k2 =541157 del ML = 10.0523, del ML2 = 10.1623

File prepared by M.J. Hynes October 22 2000

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

- 1 1 8.83697E+03 1.000E+01 9.665E+02 3.436E+01 BETA1
- 2 1 5.26253E+05 2.000E+00 8.704E+03 2.212E+00 BETA2
- 3 1 9.89671E+00 5.000E-03 3.770E-03 1.249E+00 M SHIFT
- 4 1 1.00616E+01 5.000E-03 2.900E-03 2.944E+00 ML SHIFT
- 5 1 1.05712E+01 1.000E-03 2.977E-02 3.313E+01 ML2 SHIFT

```
0RMS ERROR = 6.08E-03 MAX ERROR = 1.27E-02 AT OBS.NO. 10
RESIDUALS SQUARED = 8.51E-04
RFACTOR = 0.0545 PERCENT
```


Fig. S16 ¹H NMR titration of L with terephthalate (as Na^+ salt) in DMSO- d_6 .

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 09:59:30 on 07/26/2012

```
IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
Reaction: M + L = ML
FILE: TEST11.FIT
IDEAL DATA: K1 = 40000; DELTA M = 9.8827; DELTA ML = 11.7648
File prepared by M. J. Hynes, October 22 2000
```

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION 6.84042E+04 2.000E-01 8.469E+03 1.223E+00 1 1 K1 1.00280E+01 2.000E-01 3.119E-02 1.199E+00 SHIFT M 2 1 3 1 1.18330E+01 1.000E+00 2.098E-02 1.428E+00 SHIFT ML 0RMS ERROR = 4.83E-02 MAX ERROR = 5.93E-02 AT OBS.NO. 5 RESIDUALS SQUARED = 2.57E-02

RFACTOR = 0.3808 PERCENT

Fig. S17 ¹H NMR titration of L with BzO^{-} (as TBA^{+} salt) in DMSO- d_6 .

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 20:05:06 on 11/22/2011

Ideal data for M, ML and ML2 system.

IDEAL DATA TAKEN FROM ACTUAL FIT of JIMMY1.FIT Reactions: M + L = ML (beta1 = K1); M + 2L = ML2 (beta2 = K1K2) Theoretical: k1=2421, k1k2 = 3687000 del ML = 10.818, del ML2 = 11.553 File prepared by M.J. Hynes October 22 2000

```
NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION
```

- 1 1 3.24035E+03 1.000E+01 4.625E+02 6.644E+00 BETA1
- 2 1 4.71724E+06 1.000E+01 1.490E+05 1.989E+00 BETA2
- 3 1 9.85711E+00 5.000E-02 1.186E-02 2.124E+00 M SHIFT
- 4 1 1.08923E+01 5.000E-03 2.090E-02 3.626E+00 ML SHIFT
- 5 1 1.19220E+01 1.000E-03 1.621E-02 7.370E+00 ML2 SHIFT

0RMS ERROR = 1.42E-02 MAX ERROR = 2.88E-02 AT OBS.NO. 5 RESIDUALS SQUARED = 2.84E-03 RFACTOR = 0.1103 PERCENT

Compound	L	1	2	3	4
Formula	$C_{46}H_{54}N_{10}O_{12}S_4$	$C_{70}H_{102}N_{12}\overline{O_{12}S}$	$C_{102}H_{174}N_{14}\overline{O_{16}S_2}$	$C_{102}H_{174}N_{14}O_{16}S_{2}$	$C_{74}H_{108}N_{12}O_{1}$
Μ	1067.23	1335.70	1916.67	1916.67	1357.72
Crystal system	Triclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	<i>P</i> -1	$P2_{1}/c$	<i>P</i> -1	C2/c	P2(1)/n
<i>a</i> /Å	9.189(3)	12.501(6)	9.538(12)	27.889(4)	12.430(5)
b/Å	16.271(6)	19.167(9)	13.957(17)	16.427(2)	14.615(6)
c /Å	19.010(7)	16.971(6)	22.00(3)	24.753(3)	21.187(9)
α /°	114.021(5)	90	94.690(15)	90	90
β /°	98.024(5)	120.12(2)	100.617(17)	98.540(2)	97.784(6)
γ /°	94.551(6)	90	99.018(16)	90	90
$V/\text{\AA}^3$	2541.3(16)	3517(3)	2824(6)	11215(3)	3813(3)
Ζ	2	2	1	4	2
T/\mathbf{K}	153(2)	153(2)	153(2)	153(2)	153(2)
F(000)	1120	1436	1044	4176	1646
$D_{\rm calc}$ /g cm ⁻³	1.395	1.261	1.127	1.135	1.182
μ /mm ⁻¹	0.26	0.12	0.11	0.11	0.08
R _{int}	0.085	0.097	0.068	0.054	0.074
GOF	1.13	1.20	1.12	1.00	1.04
$R_1 \left[I > 2\sigma(I) \right]$	0.0892	0.1266	0.0790	0.1040	0.0827
$wR_2 \left[I > 2\sigma(I) \right]$	0.1754	0.2498	0.1506	0.1741	0.1650
Compound	5	6	7	8	
Formula	$C_{84}H_{112}N_{12}O_{12}$	C ₇₈ H ₁₀₆ N ₁₂ O ₁	$C_{70}H_{102}Cl_2$	N ₁₂ O ₈ C ₇₀	$H_{102}Br_2N_{12}O_8$
М	1481.86	1403.75	1310.54	139	99.46
Crystal system	Monoclinic	Monoclinic	Monoclini	e Tri	clinic
Crystal system Space group	Monoclinic $P2(1)/c$	Monoclinic $P2(1)/c$	Monoclini C2/c	c Tri	clinic I
Crystal system Space group a /Å	Monoclinic <i>P</i> 2(1)/ <i>c</i> 8.627(3)	Monoclinic P2(1)/c 23.764(5)	Monoclinio <i>C</i> 2/ <i>c</i> 41.951(7)	c Tri P-1 8.9	clinic I 484(19)
Crystal system Space group <i>a</i> /Å <i>b</i> /Å	Monoclinic <i>P</i> 2(1)/ <i>c</i> 8.627(3) 35.844(11)	Monoclinic P2(1)/c 23.764(5) 17.225(4)	Monoclini <i>C2/c</i> 41.951(7) 8.8842(15)	c Tri P-1 8.9 9.4	clinic l 484(19) 73(2)
Crystal system Space group <i>a</i> /Å <i>b</i> /Å <i>c</i> /Å	Monoclinic P2(1)/c 8.627(3) 35.844(11) 13.660(4)	Monoclinic P2(1)/c 23.764(5) 17.225(4) 20.791(5)	Monoclinie <i>C2/c</i> 41.951(7) 8.8842(15) 19.048(3)	c Tri P-1 8.9 9.4 21.	clinic 1 484(19) 73(2) 594(5)
Crystal system Space group <i>a</i> /Å <i>b</i> /Å <i>c</i> /Å α/°	Monoclinic P2(1)/c 8.627(3) 35.844(11) 13.660(4) 90	Monoclinic P2(1)/c 23.764(5) 17.225(4) 20.791(5) 90	Monoclinie <i>C</i> 2/ <i>c</i> 41.951(7) 8.8842(15) 19.048(3) 90	c Tri P-1 8.9 9.4 21. 83.	clinic 1 484(19) 73(2) 594(5) 826(3)
Crystal system Space group <i>a</i> /Å <i>b</i> /Å <i>c</i> /Å α /° β /°	Monoclinic P2(1)/c 8.627(3) 35.844(11) 13.660(4) 90 102.017(4)	Monoclinic P2(1)/c 23.764(5) 17.225(4) 20.791(5) 90 113.214(3)	Monoclinie <i>C2/c</i> 41.951(7) 8.8842(15) 19.048(3) 90 99.546(2)	c Tri P-1 8.9 9.4 21. 83. 84.	clinic 1 484(19) 73(2) 594(5) 826(3) 847(2)
Crystal system Space group <i>a</i> /Å <i>b</i> /Å <i>c</i> /Å <i>α</i> /° β /° γ /°	Monoclinic P2(1)/c 8.627(3) 35.844(11) 13.660(4) 90 102.017(4) 90	Monoclinic P2(1)/c 23.764(5) 17.225(4) 20.791(5) 90 113.214(3) 90	Monoclinie <i>C</i> 2/ <i>c</i> 41.951(7) 8.8842(15) 19.048(3) 90 99.546(2) 90	c Tri P-1 8.9 9.4 21. 83. 84. 80.	clinic 484(19) 73(2) 594(5) 826(3) 847(2) 815(3)
Crystal system Space group a / Å b / Å c / Å a / \circ β / \circ γ / \circ $V / Å^3$	Monoclinic P2(1)/c 8.627(3) 35.844(11) 13.660(4) 90 102.017(4) 90 4131(2)	Monoclinic P2(1)/c 23.764(5) 17.225(4) 20.791(5) 90 113.214(3) 90 7822(3)	Monoclinie <i>C</i> 2/ <i>c</i> 41.951(7) 8.8842(15) 19.048(3) 90 99.546(2) 90 7001(2)	c Tri P-1 8.9 9.4 21. 83. 84. 80. 179	clinic 484(19) 73(2) 594(5) 826(3) 847(2) 815(3) 91.6(7)
Crystal system Space group a / Å b / Å c / Å $\alpha / °$ $\beta / °$ $\gamma / °$ $V / Å^3$ Z	Monoclinic P2(1)/c 8.627(3) 35.844(11) 13.660(4) 90 102.017(4) 90 4131(2) 2	Monoclinic P2(1)/c 23.764(5) 17.225(4) 20.791(5) 90 113.214(3) 90 7822(3) 4	Monoclinie <i>C</i> 2/ <i>c</i> 41.951(7) 8.8842(15) 19.048(3) 90 99.546(2) 90 7001(2) 4	c Tri P-1 8.9 9.4 21. 83. 84. 80. 179 1	clinic 484(19) 73(2) 594(5) 826(3) 847(2) 815(3) 91.6(7)
Crystal system Space group a/Å b/Å c/Å a/° $\beta/°$ $\gamma/°$ $V/Å^3$ Z T/K	Monoclinic P2(1)/c 8.627(3) 35.844(11) 13.660(4) 90 102.017(4) 90 4131(2) 2 153(2)	Monoclinic P2(1)/c 23.764(5) 17.225(4) 20.791(5) 90 113.214(3) 90 7822(3) 4 153(2)	Monoclinie <i>C</i> 2/ <i>c</i> 41.951(7) 8.8842(15) 19.048(3) 90 99.546(2) 90 7001(2) 4 296(2)	c Tri P-1 8.9 9.4 21. 83. 84. 80. 179 1 292	clinic 484(19) 73(2) 594(5) 826(3) 847(2) 815(3) 91.6(7) 3(2)
Crystal system Space group a/Å b/Å c/Å $\alpha/^{\circ}$ $\beta/^{\circ}$ $\gamma/^{\circ}$ $V/Å^{3}$ Z T/K F(000)	Monoclinic P2(1)/c 8.627(3) 35.844(11) 13.660(4) 90 102.017(4) 90 4131(2) 2 153(2) 1592	Monoclinic P2(1)/c 23.764(5) 17.225(4) 20.791(5) 90 113.214(3) 90 7822(3) 4 153(2) 3016	Monoclinie C2/c 41.951(7) 8.8842(15) 19.048(3) 90 99.546(2) 90 7001(2) 4 296(2) 2816	c Tri P-1 8.9 9.4 21. 83. 84. 80. 179 1 292 740	clinic 484(19) 73(2) 594(5) 826(3) 847(2) 815(3) 91.6(7) 3(2)
Crystal system Space group a/Å b/Å c/Å a/° $\beta/°$ $\gamma/°$ $\gamma/°$ $V/Å^3$ Z T/K F(000) $D_{calc}/g cm^{-3}$	Monoclinic P2(1)/c 8.627(3) 35.844(11) 13.660(4) 90 102.017(4) 90 4131(2) 2 153(2) 1592 1.191	Monoclinic P2(1)/c 23.764(5) 17.225(4) 20.791(5) 90 113.214(3) 90 7822(3) 4 153(2) 3016 1.192	Monoclinie C2/c 41.951(7) 8.8842(15) 19.048(3) 90 99.546(2) 90 7001(2) 4 296(2) 2816 1.243	c Tri P-1 8.9 9.4 21. 83. 84. 80. 179 1 292 740 1.2	clinic 484(19) 73(2) 594(5) 826(3) 847(2) 815(3) 91.6(7) 3(2) 97
Crystal system Space group a/Å b/Å c/Å a/° $\beta/°$ $\gamma/°$ $\gamma/°$ $V/Å^3$ Z T/K F(000) $D_{calc}/g cm^{-3}$ μ/mm^{-1}	Monoclinic P2(1)/c 8.627(3) 35.844(11) 13.660(4) 90 102.017(4) 90 4131(2) 2 153(2) 1592 1.191 0.08	Monoclinic P2(1)/c 23.764(5) 17.225(4) 20.791(5) 90 113.214(3) 90 7822(3) 4 153(2) 3016 1.192 0.08	Monoclinie C2/c 41.951(7) 8.8842(15) 19.048(3) 90 99.546(2) 90 7001(2) 4 296(2) 2816 1.243 0.16	c Tri P-1 8.9 9.4 21. 83. 84. 80. 179 1 293 740 1.2 1.1	clinic 484(19) 73(2) 594(5) 826(3) 847(2) 815(3) 91.6(7) 3(2) 97 9
Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ $\gamma / °$ $V / Å^3$ Z T / K F(000) $D_{calc} / g cm^{-3}$ μ / mm^{-1} R_{int}	Monoclinic P2(1)/c 8.627(3) 35.844(11) 13.660(4) 90 102.017(4) 90 4131(2) 2 153(2) 1592 1.191 0.08 0.065	Monoclinic P2(1)/c 23.764(5) 17.225(4) 20.791(5) 90 113.214(3) 90 7822(3) 4 153(2) 3016 1.192 0.08 0.132	Monoclinia C2/c 41.951(7) 8.8842(15) 19.048(3) 90 99.546(2) 90 7001(2) 4 296(2) 2816 1.243 0.16 0.062	c Tri P-1 8.9 9.4 21. 83. 84. 80. 179 1 292 740 1.2 21.1 0.0	clinic 484(19) 73(2) 594(5) 826(3) 847(2) 815(3) 91.6(7) 3(2) 97 9 36
Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ $\gamma / °$ $V / Å^3$ Z T / K F(000) $D_{calc} / g cm^{-3}$ μ / mm^{-1} R_{int} GOF	Monoclinic P2(1)/c 8.627(3) 35.844(11) 13.660(4) 90 102.017(4) 90 4131(2) 2 153(2) 1592 1.191 0.08 0.065 1.06	Monoclinic P2(1)/c 23.764(5) 17.225(4) 20.791(5) 90 113.214(3) 90 7822(3) 4 153(2) 3016 1.192 0.08 0.132 1.17	Monoclinie C2/c 41.951(7) 8.8842(15) 19.048(3) 90 99.546(2) 90 7001(2) 4 296(2) 2816 1.243 0.16 0.062 1.03	c Tri P-1 8.9 9.4 21. 83. 84. 80. 179 1 293 740 1.2 1.1 0.0 1.1	clinic 484(19) 73(2) 594(5) 826(3) 847(2) 815(3) 91.6(7) 3(2) 97 9 36 3
Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ $\gamma / °$ $V / Å^3$ Z T / K F(000) $D_{calc} / g cm^{-3}$ μ / mm^{-1} R_{int} GOF $R_1 [I > 2\sigma(D)]$	Monoclinic P2(1)/c 8.627(3) 35.844(11) 13.660(4) 90 102.017(4) 90 4131(2) 2 153(2) 1592 1.191 0.08 0.065 1.06 0.0837	Monoclinic P2(1)/c 23.764(5) 17.225(4) 20.791(5) 90 113.214(3) 90 7822(3) 4 153(2) 3016 1.192 0.08 0.132 1.17 0.1378	Monoclinie C2/c 41.951(7) 8.8842(15) 19.048(3) 90 99.546(2) 90 7001(2) 4 296(2) 2816 1.243 0.16 0.062 1.03 0.0540	c Tri P-1 8.9 9.4 21. 83. 84. 80. 179 1 292 740 1.2 292 740 1.2 1.1 0.0 1.1 0.0	clinic 484(19) 73(2) 594(5) 826(3) 847(2) 815(3) 91.6(7) 3(2) 97 9 36 3 479

D–H…A	<i>d</i> (D–H) (Å)	$d(\mathrm{H}^{}\mathrm{A})(\mathrm{\AA})$	$d(D \cdot \cdot \cdot A)$ (Å)	∠(DHA) (°)
N2–H2A…O5	0.860	2.033(9)	2.890(1)	174.0
N2 ^a -H2A ^a ···O8 ^a	0.860	2.100(9)	2.808(1)	139.1
N3 ^a -H3A ^a ···O6 ^a	0.860	1.975(8)	2.828(9)	171.5
N3–H3A…O7	0.860	2.271(9)	2.934(1)	134.1
N4 ^a -H4A ^a ···O6 ^a	0.860	2.224(9)	3.055(1)	162.8
N4–H4A…O7	0.860	2.044(8)	2.735(9)	136.8
N5 ^a –H5A ^a …O5	0.860	2.445(1)	3.304(1)	178.0
N5–H5A…O7	0.860	2.291(1)	2.946(1)	133.2
$C3^{a}$ – $H3^{a}$ ···· $O8^{a}$	0.950	2.439(7)	3.207(9)	137.9

Table S2. Hydrogen bonds around the SO_4^{2-} ion in complex **1**.

Symmetry code: ^a 1 - x, 1 - y, 1 - z.

Table S3. Hydrogen bonds around the SO_4^{2-} ion in complex **2**.

D–H…A	<i>d</i> (D–H) (Å)	$d(\mathrm{H}^{}\mathrm{A})(\mathrm{\AA})$	$d(D \cdots A)$ (Å)	∠(DHA) (°)
N2-H2A…O5	0.880	2.668(4)	3.338(5)	133.8
N2–H2A…O7	0.880	1.907(4)	2.753(5)	160.7
N3–H3A…O5	0.880	2.076(3)	2.914(5)	159.0
N3–H3A…O7	0.880	2.698(4)	3.353(5)	132.2
N4–H4A…O5	0.880	1.990(3)	2.856(4)	168.0
N5–H5A…O5	0.880	2.462(4)	3.206(5)	142.5
N5–H5A…O6	0.880	2.357(4)	3.136(6)	147.5
С5-Н5…О7	0.950	2.714(4)	3.431(6)	132.9

Table S4. Hydrogen bonds around the SO_4^{2-} ion in complex **3**.

D–H…A	<i>d</i> (D–H) (Å)	$d(H \cdots A)(Å)$	d(D - A)(Å)	\angle (DHA) (°)
N2–H2A…O7	0.880	1.956(2)	2.784(4)	156.0
N3-H3A…O5	0.880	1.978(3)	2.852(4)	171.5
N4–H4A…O5	0.880	1.930(3)	2.803(5)	171.0
N5-H5A…O6	0.880	1.984(3)	2.797(5)	152.8
С3-Н3…О5	0.950	2.465(4)	3.240(5)	138.7

Table S5. Hydrogen bonds around the AcO^{-} ion in complex 4.

D–H···A	<i>d</i> (D–H) (Å)	$d(H\cdots A)$ (Å)	$d(D \cdots A)$ (Å)	\angle (DHA) (°)
N2-H2…O6	0.880	2.001(3)	2.874(5)	171.7
N3-H3…O5	0.880	1.837(3)	2.712(5)	173.0
N4 ^a -H4 ^a ····O6	0.880	2.115(3)	2.925(5)	152.8
N5 ^a -H5 ^a ···O6	0.880	1.923(3)	2.774(5)	162.2

Symmetry code: a - 1 - x, -y, -z.

D–H…A	<i>d</i> (D–H) (Å)	$d(\mathrm{H}^{}\mathrm{A})(\mathrm{\AA})$	$d(D \cdot \cdot \cdot A)$ (Å)	∠(DHA) (°)
N2-H2A…O5	0.880	1.958(3)	2.808(4)	162.0
N3-H3A…O5	0.880	2.169(3)	2.916(4)	142.3
N4-H4A…O6	0.880	1.968(3)	2.799(4)	156.7
N5-H5A…O6	0.880	2.038(30	2.852(4)	153.7

Table S6. Hydrogen bonds around the BzO⁻ ion in complex 5.

 Table S7. Hydrogen bonds around the terephthalate ion in complex 6.

D–H…A	<i>d</i> (D–H) (Å)	$d(\mathrm{H}^{}\mathrm{A})$ (Å)	$d(D \cdot \cdot \cdot A)$ (Å)	∠(DHA) (°)
N2-H2A…O18	0.860	2.086(4)	2.866(6)	150.7
N3-H3A…O18	0.860	2.076(4)	2.873(7)	153.9
N4-H4A…O17	0.860	1.965(4)	2.777(6)	156.8
N5-H5A…O17	0.860	2.084(3)	2.869(5)	151.6
N7 ^a -H7A ^a ···O19	0.860	2.071(6)	2.732(9)	133.1
N8 ^a -H8A ^a ···O19	0.860	1.999(6)	2.771(8)	149.0
N9 ^a –H9A ^a ···O20	0.860	2.180(5)	2.959(7)	150.4
N10 ^a –H10A ^a …O20	0.860	2.030(4)	2.834(6)	155.5

Symmetry code: ^a x, 1 + y, z.

Table S8. Hydrogen bonds around the Cl⁻ ion in complex **7**.

D–H…A	d(D–H) (Å)	$d(\mathrm{H}^{}\mathrm{A})$ (Å)	$d(D \cdots A)$ (Å)	∠(DHA) (°)
N2–H2A…Cl	0.860	2.501(6)	3.249(2)	145.8
N3–H3A…Cl	0.860	2.701(5)	3.290(2)	127.0
N4–H4A…Cl	0.860	2.427(5)	3.206(2)	150.8
N5–H5A…Cl	0.860	2.490(5)	3.296(1)	156.3

Table S9. Hydrogen bonds around the Br⁻ ion in complex 8.

D–H···A	<i>d</i> (D–H) (Å)	$d(H\cdots A)$ (Å)	$d(D \cdots A)$ (Å)	\angle (DHA) (°)
N2–H2A…Br	0.880	2.765(6)	3.517(3)	144.3
N3–H3A…Br	0.880	2.513(5)	3.321(3)	152.9
N4–H4A…Br	0.880	2.483(5)	3.355(3)	171.1
N5–H5A…Br	0.880	2.873(6)	3.694(3)	156.0

References:

1. Z.-M. Shi, S.-G. Chen, X. Zhao, X.-K. Jiang and Z.-T. Li, Org. Biomol. Chem., 2011, 9, 8122-8129.