Supporting Information

Conversions between dimeric and polymeric ketopiperazinediacetato complexes constructed by water-layers

Yu-Chen Yang, Xue Jiang, Zhao-Hui Zhou*

- Figure S1 ORTEP plot of neutral dimeric unit in [Ni₂(kpda)₂(H₂O)₄]_n·6nH₂O (**2**) at 30% probability levels.
- Figure S2 ORTEP plot of neutral dimeric unit in [Zn₂(kpda)₂(H₂O)₄]_n⋅6nH₂O (**3**) at 30% probability levels.
- Figure S3 ORTEP plot of neutral dimeric unit in [Ni₂(kpda)₂(H₂O)₆]·H₂O (**5**) at 30% probability levels.
- Figure S4 ORTEP plot of neutral dimeric unit in [Zn₂(kpda)₂(H₂O)₆]·H₂O (**6**) at 30% probability levels.
- Figure S5. UV-Vis reflective spectra of $[Co_2(kpda)_2(H_2O)_4]_n \cdot 6nH_2O$ (1), $[Zn_2(kpda)_2(H_2O)_4]_n \cdot 6nH_2O$ (3), $[Co_2(kpda)_2(H_2O)_6] \cdot H_2O$ (4) and $[Ni_2(kpda)_2(H_2O)_6] \cdot H_2O$ (5).
- Figure S6. IR spectra of $[M_2(kpda)_2(H_2O)_4]_n \cdot 6nH_2O$ [M = Co 1, Zn 3]
- Figure S7. IR spectra of $[M_2(kpda)_2(H_2O)_6] \cdot H_2O$ [M = Co 4, Ni 5, Zn 6]
- Figure S8. Thermogravimetric analysis of [Co₂(kpda)₂(H₂O)₄]_n·6nH₂O (1)
- Figure S9. Thermogravimetric analysis of [Zn₂(kpda)₂(H₂O)₄]_n·6nH₂O (**3**)
- Figure S10. Thermogravimetric analysis of [Ni₂(kpda)₂(H₂O)₆]·H₂O (5)

- Table S1 ¹³C NMR spectral data (in ppm) of ketopiperazinediacetic acid and its zinc complexes
- Table S2Selected bond distance (Å) and angles (°) for $[M_2(kpda)_2(H_2O)_4]_n \cdot 6nH_2O$ [M = Co1, Ni 2, Zn 3] and $[M_2(kpda)_2(H_2O)_6] \cdot H_2O$ [M = Co 4, Ni 5, Zn 6]
- Table S3.Selected bond distances and angles within the water layer in 1.
- Table S4.Selected bond distances and angles in 4.

Compounds	α-C O ₂	β -C O ₂	С=О	α-CH ₂ CO ₂	β-CH ₂ CO ₂	-CH ₂ C=O	-CH ₂ NC=O	-CH ₂ N
kpda _{aq}	174.9	171.6	166.3	60.2	55.4	51.4	51.3	46.8
$[Zn_2(kpda)_2(H_2O)_4]_n \cdot 6nH_2O (3)_{solid}$	178.0(3.1)	176.2(4.6)	167.4(1.1)	55.5(-4.7)	54.4(-1.0)	49.5(-1.9)	48.8(-2.5)	44.1(-2.7)
$[Zn_2(kpda)_2(H_2O)_4]_n \cdot 6nH_2O (\textbf{3})_{aq}$		178.1(6.5)	170.5(4.2)	63.1(2.9)	58.0(2.6)	53.0(1.6)	52.3(1.0)	48.4(1.6)
$[Zn(kpda)(H_2O)_2]_n \cdot nH_2O(7)_{aq}^3$	179.5(4.6)	178.2(6.6)	170.6(4.3)	63.1(2.9)	58.1(2.7)	53.0(1.6)	52.4(1.1)	48.3(1.5)

Table S1. ¹³C NMR spectral data (in ppm) of ketopiperazinediacetic acid and its zinc complexes

Table S2. Selected bond distance (Å) and angles (°) for $[M_2(kpda)_2(H_2O)_4]_n \cdot 6nH_2O$ [M = Co 1, Ni 2, Zn 3] and $[M_2(kpda)_2(H_2O)_6] \cdot H_2O$ [M = Co

4, Ni 5, Zn 6]

Bond distances							
	1	2	3		4	5	6
M-01	2.088(3)	2.022(4)	2.054(3)	M01	2.052(3)	2.041(3)	2.053(3)
M–N1	2.205(4)	2.136(6)	2.210(4)	M-N1	2.199(4)	2.140(4)	2.215(4)
M–O2d	2.049(3)	2.058(5)	2.118(3)	М-О5а	2.025 (3)	2.011(3)	2.023(4)
М-О5а	2.040(3)	2.027(5)	2.046(3)	M–O1w	2.141(3)	2.107(3)	2.142(4)
M–O1w	2.147(3)	2.078(5)	2.141(3)	M–O2w	2.084(3)	2.052(3)	2.058(4)
M–O2w	2.123(3)	2.103(5)	2.119(3)	M–O3w	2.214(3)	2.162(3)	2.273(4)

Bond angles							
	1	2	3		4	5	6
O5a-M-O1	161.9(1)	167.0(2)	161.8(1)	O5a-M-O1	167.2(1)	169.8(1)	166.1(1)
O5a–M–O2d	99.0(1)	96.7(2)	99.6(1)	O5a–M-O2w	96.0(1)	95.2(1)	97.2(1)
O1-M-O2d	93.0(1)	91.6(2)	92.6(1)	O1-M-O2w	96.2(1)	94.4(1)	95.5 (1)

O5a–M–O2w	93.5(1)	93.4(2)	94.1(1)	O5a-M-O1w	91.6(1)	91.2(1)	92.1(1)
O1–M–O2w	100.1(1)	96.7(2)	99.7(1)	O1-M-O1w	92.0(1)	91.8(1)	93.0(1)
O2d-M-O2w	89.9(1)	89.5(2)	88.4(1)	O2w-M-O1w	92.4(1)	91.6(1)	93.0(1)
O5a–M–O1w	86.9(1)	88.4(2)	86.6(1)	O5a-M-N1	87.2(1)	87.9(1)	86.4(1)
O1-M-O1w	82.2(1)	83.9(2)	82.4(1)	O1-M-N1	80.6(1)	82.5(1)	80.8(1)
O2d-M-O1w	172.9(1)	174.0(2)	172.6(1)	O2w-M-N1	176.7(1)	176.8(1)	175.8(2)
O2w-M-O1w	85.8(1)	87.1(2)	87.2(1)	O1w-M-N1	88.3(1)	89.3(1)	89.2(2)
O5a–M–N1	88.1(1)	88.4(2)	87.8(1)	О5а-М-О3w	90.3(1)	91.0(1)	89.7(1)
O1-M-N1	79.9(1)	82.4(2)	80.3(1)	O1–M–O3w	87.3(1)	86.9(1)	86.4(1)
O2d-M-N1	83.2(1)	84.6(2)	82.9(1)	O2w-M-O3w	82.2(1)	82.6(1)	81.6 (1)
O2w-M-N1	173.0(1)	174.0(2)	171.3(1)	O1w-M-O3w	174.5(1)	173.9(1)	174.5(1)
O1w-M-N1	101.0(1)	98.7(2)	101.4(1)	N1-M-O3w	97.0(1)	96.4(1)	96.1(1)

Symmetric transformations: for 1, (a) -x + 1, -y, -z + 1; (d) x, $-y + \frac{1}{2}$; for 2, (a) -x - 1, -y + 1, -z - 1; (d) x, $-y + \frac{1}{2}$; for 3, (a) -x + 1, -y, -z + 1; (d) x, $-y + \frac{1}{2}$; $z + \frac{1}{2}$; for 4, (a) -x + 1, -y + 1, -z + 2; for 5, (a) -x, -y, -z + 1; for 6, (a) -x + 1, -y, -z + 1;

D–H····A	D-H (Å)	H····A (Å)	D····A (Å)	$D-H\cdots A(^{\circ})$
O1w–H····O4w	0.85(2)	1.93(2)	2.756(5)	165(4)
O1w–H····O4wa	0.84(2)	1.98(2)	2.811(5)	170(3)
O3w–H····O2w	0.85(3)	1.93(3)	2.772(5)	168(3)
O3w–H····O5wb	0.86(4)	2.01(4)	2.839(6)	162(4)
O4w−H····O5w	0.85(4)	1.95(4)	2.790(6)	172(3)
О5w–Н····О3w	0.85(4)	1.85(4)	2.702(5)	175(5)

Table S3. Selected bond distances and angles within the water layer in 1

Symmetry transformations: (a) -*x*, -*y*, -*z*; (b) *x*, $\frac{1}{2}$ - *y*, $\frac{1}{2}$ + *z*;

Table S4. Selected bond distances and angles in 4

D–H····A	D-H (Å)	H····A(Å)	D····A (Å)	$D-H\cdots A(^{o})$
О1ш–Н…О1а	0.84(3)	1.95(3)	2.798(5)	179(3)
O1w–H····O3wb	0.85(3)	2.14(3)	2.990(5)	178(3)
О2w-Н…О2с	0.85(4)	1.85(4)	2.695(5)	169(3)
O3w-H···O3d	0.86(3)	1.92(3)	2.766(5)	169(3)
О3w-Н…О4е	0.85(3)	1.90(3)	2.677(5)	152(4)
O4w-H····O2	0.84(4)	2.50(5)	2.844(5)	106(3)

Symmetry transformations: (a) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}$; (b) x, y - 1, z; (c) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}$; (d) x, y + 1, z; (e) $-x + \frac{1}{2}, \frac{3}{2} - y, -z + 2$