# One-shot versus stepwise gas-solid synthesis of iron trifluoride: investigation of pure molecular $F_2$ fluorination of chloride precursors

Nicolas Louvain,<sup>a</sup> Ahmed Fakhry,<sup>a</sup> Pierre Bonnet,<sup>\*a</sup> Malika El-Ghozzi,<sup>a</sup> Katia Guérin,<sup>a</sup> Moulay-Tahar Sougrati,<sup>b</sup> Jean-Claude Jumas,<sup>b</sup> and Patrick Willmann<sup>c</sup>

<sup>a</sup> Institut de Chimie de Clermont-Ferrand CNRS UMR6296, Clermont Université, Université Blaise Pascal, 24 avenue des Landais BP80026, 63171 Aubière, France. Fax: +334 73 40 79 33; Tel: +334 73 40 71 25; E-mail: pierre.m.bonnet@univ-bpclermont.fr <sup>b</sup> Institut Charles Gerhardt Montpellier, AIME, CNRS UMR5253, Université Montpellier 2, Place Eugène Bataillon - CC 004, 34095 Montpellier cedex 05, France. Fax: +334 67 143 862; Tel: +334 67 143 309; E-mail: jumas@univ.montp2.fr <sup>c</sup> Centre National d'Etudes Spatiales, Centre Spatial de Toulouse, 18 avenue Edouard Belin, 31401 Toulouse cedex 9, France. Fax: +335 61 28 21 61; Tel: +335 61 27 41 85; E-mail: patrick.willmann@cnes.fr Crystal structures of iron fluorides: an overview......2 Rhombohedral FeF<sub>3</sub> (anhydrous) ......2 Hexagonal tungsten bronze FeF<sub>3</sub>·0.33H<sub>2</sub>O and FeF<sub>3</sub> (anhydrous)......2 Fe<sub>1.9</sub>F<sub>4.75</sub>·0.95H<sub>2</sub>O......5 Crystal structures of iron chlorides ......6 FeCl<sub>2</sub>·4H<sub>2</sub>O......6 Crystal structures of iron oxide hydroxides......10 Thermogravimetric analysis......11 TG analysis of the iron chloride precursors ......11 TG analysis of the fluorinated powders ......11 

#### Crystal structures of iron fluorides: an overview

#### Rhombohedral FeF<sub>3</sub> (anhydrous)

#### Structural parameters

| Formula | ICSD #         | <b>PDF</b> #(c)    | <b>PDF</b> #(*)           | a, Å              | <i>b</i> , Å              | c, Å              | $V, Å^3$   |
|---------|----------------|--------------------|---------------------------|-------------------|---------------------------|-------------------|------------|
| FeF3    | 41120          | 01-088-2023        | 00-033-647                | 5.362(1)          | 5.362(1)                  | 5.362(1)          | 103.86     |
| Ty      | pe             | Space              | group                     | α, deg.           | <i>β</i> , deg.           | γ, deg.           | Z          |
| Perov   | skite          | R-                 | 3 <i>c</i>                | 57.94(2)          | 57.94(2)                  | 57.94(2)          | 2          |
| Dof     | M. Leblanc, J. | Pannetier, G. Fére | y, R. de Pape, <i>Rev</i> | vue de Chimie Mit | nérale, <b>1985</b> , 22, | 107-114; Phase Tr | ransition, |
| Kel.    | 1992. 38. 127- | 220                |                           |                   |                           |                   |            |

Crystal structure images



Fig. S1 Crystal structure of rhombohedral FeF<sub>3</sub> (r-FeF<sub>3</sub>) viewed along the *a* axis

#### Hexagonal tungsten bronze FeF<sub>3</sub>·0.33H<sub>2</sub>O and FeF<sub>3</sub> (anhydrous)

#### Structural parameters

| Formula                                                                                                                   | ICSD # | PDF #(c)    | <b>PDF</b> #(*) | a, Å    | b, Å            | c, Å    | $V, Å^3$ |
|---------------------------------------------------------------------------------------------------------------------------|--------|-------------|-----------------|---------|-----------------|---------|----------|
| FeF3(H2O)0.33                                                                                                             | 35359  | 01-076-1262 | none            | 7.423   | 12.73           | 7.526   | 711.17   |
| Туре                                                                                                                      |        | Space g     | group           | α, deg. | <i>β</i> , deg. | γ, deg. | Z        |
| HTB                                                                                                                       |        | Cmcm        |                 | 90      | 90              | 90      | 12       |
| Ref. M. Leblanc, G. Férey, G. Chevalier, P. Calage, R. de Pape, <i>Journal of Solid State Chemistry</i> , 1983, 47, 53-58 |        |             |                 |         |                 |         |          |

#### Notes

To the best of our knowledge, no structural data is to be found for the dehydrated compound, neither from the ICSD nor the PDF database. Nonetheless the dehydration of  $FeF_3 \cdot 0.33H_2O$  has been studied and it unambiguously leads to the anhydrous HTB-FeF<sub>3</sub> discussed in the main text of the article.



Fig. S2 Crystal structure of HTB  $FeF_3 \cdot 0.33H_2O$  viewed along the *c* axis; the open channels where water molecules are accommodated are directed along the *c* axis

#### **Pyrochlore FeF**<sub>3</sub>

Structural parameters

| Formula | ICSD #                                | <b>PDF</b> #(c)    | <b>PDF</b> #(*)      | a, Å                     | b, Å              | c, Å               | $V, Å^3$     |
|---------|---------------------------------------|--------------------|----------------------|--------------------------|-------------------|--------------------|--------------|
| FeF3    | 202047                                | 01-084-1101        | 00-038-1305          | 10.325                   | 10.325            | 10.325             | 1100.7       |
| Ту      | Туре                                  |                    | Space group          |                          | $\beta$ , deg.    | γ, deg.            | Z            |
| Pyroc   | Pyrochlore Fd-3m                      |                    | -3 <i>m</i>          | 90                       | 90                | 90                 | 16           |
| Ref.    | R. de Pape, G. <b>2002</b> , 1, 1-123 | Férey, Materials I | Research Bulletin, 1 | <b>1986</b> , 21, 971-97 | '8; Golden Book d | of Phase Transitio | ns, Wroclaw, |

Crystal structure images



Fig. S3 Crystal structure of pyrochlore FeF<sub>3</sub> viewed along the [011] (left) and [0-11] directions (right), thus showing the 3D channels network

#### β-FeF<sub>3</sub>·3H<sub>2</sub>O

#### Structural parameters

| Formula    | ICSD #           | PDF #(c)           | <b>PDF</b> #(*)           | a, Å            | b, Å    | c, Å  | $V, Å^3$ |
|------------|------------------|--------------------|---------------------------|-----------------|---------|-------|----------|
| FeF3(H2O)3 | 14134            | 01-85-0404         | 00-032-0464               | 7.846           | 7.846   | 3.877 | 238.67   |
| Тур        | Type Space group |                    | a, deg.                   | <i>β</i> , deg. | γ, deg. | Z     |          |
| 1D ch      | ains             | $P_{2}$            | 4/ <i>n</i>               | 90              | 90      | 90    | 2        |
| Ref.       | G. Teufer, Acto  | a Crystallographic | a, <b>1964</b> , 17, 1480 |                 |         |       |          |

#### Crystal structure images



Fig. S4 Crystal structure of FeF<sub>3</sub>·3H<sub>2</sub>O viewed along the *c* axis (left); detailed geometry of the distorted Fe<sup>3+</sup> octahedra, showing the positional disorder of the oxygen and fluorine atoms around the iron (right)

#### Notes

As it can be seen from the Fig. S4, there are one water molecule coordinated to the Fe(III), disordered over four positions, and the two remaining molecules are located in between the iron fluoride chains by van der Waals interactions. Therefore, it seems possible to obtain the dehydrated compound,  $FeF_3$ 'H<sub>2</sub>O. Although this formulation has been used in the past for thermally-treated iron fluoride hydrates,

there is no structural report about it, only a referenced experimental pattern in the PDF database (#00-026-0783, B quality).

#### Fe<sub>2</sub>F<sub>5</sub>·7H<sub>2</sub>O

#### Structural parameters

| Formula     | ICSD #          | PDF #(c)          | PDF #(I)            | a, Å            | b, Å              | c, Å                    | $V, Å^3$ |
|-------------|-----------------|-------------------|---------------------|-----------------|-------------------|-------------------------|----------|
| Fe2F5(H2O)7 | none            | None              | 00-045-0883         | 6.582           | 8.988             | 10.542                  | 501.38   |
| Typ         | Туре S          |                   | e group             | $\alpha$ , deg. | <i>β</i> , deg.   | γ, deg.                 | Z        |
| undesc      | undescribed     |                   | <i>P</i> -1         |                 | 123.28            | 82.93                   | 2        |
| Ref.        | K. Gallagher, M | I. Ottaway, Journ | ial of the Chemical | Society, Dalton | Transactions, 197 | <b>75</b> , 11, 978-982 |          |

#### Notes

To the best of our knowledge, this structure is not reported in any database, except for the indexed XRD pattern from the PDF database. According to the authors (*vide infra*), the dehydration of this compound under flowing nitrogen supposedly leads to  $Fe_2F_5$ <sup>2</sup>H<sub>2</sub>O.

#### Fe<sub>2</sub>F<sub>5</sub>·2H<sub>2</sub>O

#### Structural parameters

| Formula     | ICSD #                                                                                                          | PDF #(c)    | <b>PDF</b> #(*) | a, Å    | <i>b</i> , Å    | <i>c</i> , Å | $V, Å^3$ |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------|-------------|-----------------|---------|-----------------|--------------|----------|--|--|
| Fe2F5(H2O)2 | 1167                                                                                                            | 01-070-0504 | 00-049-1263     | 7.489   | 10.897          | 6.671        | 544.4    |  |  |
| Туре        | 2                                                                                                               | Space       | group           | a, deg. | <i>β</i> , deg. | γ, deg.      | Z        |  |  |
| Pyrochl     | ore Imma                                                                                                        |             | ma              | 90      | 90              | 90           | 4        |  |  |
| Def         | W. Hall, S. Kim, J. Zubieta, E. G. Walton, D. B. Brown, Inorganic Chemistry, 1977, 16, 1884-1887                |             |                 |         |                 |              |          |  |  |
| Kel.        | Worzala, H., Calov, U., Wilde, W., Inst. f. Angewandte Chemie e. V., Berlin, Germany, ICDD Grant-in-Aid, (1997) |             |                 |         |                 |              |          |  |  |

#### Notes

At least four other structures of  $Fe_2F_5$   $^{2}H_2O$  are reported in the ICSD database under the ICSD codes: #201737, #201797, #201798, #201799. Their calculated patterns are referred to as PDF #01-086-1658, PDF #01-084-0878, PDF #01-084-0879, PDF #01-084-0880, respectively.



Fig. S5 Crystal structure of Fe<sub>2</sub>F<sub>5</sub>·2H<sub>2</sub>O viewed along the *a* axis

#### Fe1.9F4.75 0.95H2O

#### Structural parameters

| Formula                                                                                            | ICSD #         | <b>PDF</b> #(c)   | <b>PDF</b> #( <b>B</b> ) | a, Å              | b, Å               | <i>c</i> , Å | $V, Å^3$ |
|----------------------------------------------------------------------------------------------------|----------------|-------------------|--------------------------|-------------------|--------------------|--------------|----------|
| Fe1.9F4.75(H2O)0.95                                                                                | none           | none              | 00-028-0483              | 10.35             | 10.35              | 10.35        | 1108.72  |
| Туре                                                                                               |                | Space             | e group                  | a, deg.           | β, deg.            | γ, deg.      | Ζ        |
| Pyrochlore                                                                                         | 2              | C                 | ubic                     | 90                | 90                 | 90           | 4        |
| Dof                                                                                                | Charpin, P., M | lacheteau., C. R. | Seances Acad. Sci        | i., Ser. C 280, 6 | 51 ( <b>1975</b> ) |              |          |
| Ker. C. Li, L. Gu, S. Tsukimoto, P. A. Van Aken, J. Maier, Advanced Materials, 2010, 22, 3650-3654 |                |                   |                          |                   |                    |              | Ļ        |

#### Fe<sub>3</sub>F<sub>8</sub>·2H<sub>2</sub>O

#### Structural parameters

| Formula     | ICSD #                                                                                           | <b>PDF</b> #(c) | <b>PDF</b> #(*) | <i>a</i> , Å | b, Å            | c, Å    | $V, Å^3$ |  |  |
|-------------|--------------------------------------------------------------------------------------------------|-----------------|-----------------|--------------|-----------------|---------|----------|--|--|
| Fe3F8(H2O)2 | 37140                                                                                            | 01-076-2285     | none            | 7.612        | 7.5             | 7.469   | 375.16   |  |  |
| Туре        | Туре                                                                                             |                 | Space group     |              | <i>β</i> , deg. | γ, deg. | Z        |  |  |
| HTB         |                                                                                                  | C2/             | т               | 90           | 118.38          | 90      | 2        |  |  |
| Pof E       | E. Herdtweck, Zeitschrift fur Anorganische und Allgemeine Chemie, 1983, 501, 131-136             |                 |                 |              |                 |         |          |  |  |
| Kei.        | M. Leblanc, G. Férey, Y. Calage, R. de Pape, Journal of Solid State Chemistry, 1984, 53, 360-368 |                 |                 |              |                 |         |          |  |  |

#### Notes

Another structure of  $Fe_3F_8$ :  $2H_2O$  is reported in the ICSD database under the ICSD code #38366. Its calculated pattern is referred to as PDF #01-077-0306.

#### Crystal structure images



Fig. S6 Crystal structure of  $Fe_3F_8$ ·2H<sub>2</sub>O viewed along the [110] direction

#### FeOF

Structural parameters

| Formula | ICSD #                                                                                            | PDF #(c)    | <b>PDF</b> #( <b>I</b> ) | a, Å            | b, Å            | c, Å     | $V, Å^3$ |  |
|---------|---------------------------------------------------------------------------------------------------|-------------|--------------------------|-----------------|-----------------|----------|----------|--|
| FeOF    | 2875                                                                                              | 01-070-1522 | 00-018-0648              | 4.654(3)        | 4.654(3)        | 4.654(3) | 66.24    |  |
| Ty      | pe                                                                                                | Space       | group                    | $\alpha$ , deg. | <i>β</i> , deg. | γ, deg.  | Z        |  |
| Rut     | $P4_2/mnm$                                                                                        |             | 90                       | 90              | 90              | 2        |          |  |
| Dof     | M. Vlasse, J. C. Massies, G. Demazeau, Journal of Solid State Chemistry, <b>1973</b> , 8, 109-113 |             |                          |                 |                 |          |          |  |
| Kel.    | Hagenmuller, Portier et al., C. R. Seances Acad. Sci. (Paris) 260, 4768 (1965)                    |             |                          |                 |                 |          |          |  |

#### Crystal structure images



Fig. S7 Crystal structure of FeOF viewed along the c axis

#### Crystal structures of iron chlorides

#### FeCl<sub>2</sub>·4H<sub>2</sub>O

#### Structural parameters

| Formula                              | ICSD #          | PDF #(c)          | <b>PDF</b> #(*)   | <i>a</i> , Å     | b, Å             | c, Å                        | $V, Å^3$ |
|--------------------------------------|-----------------|-------------------|-------------------|------------------|------------------|-----------------------------|----------|
| FeCl <sub>2</sub> ·4H <sub>2</sub> O | 9488            | 01-071-0917       | 00-016-0123       | 5.885(3)         | 7.180(6)         | 8.514(4)                    | 335.66   |
| Тур                                  | e               | Space             | group             | $\alpha$ , deg.  | <i>β</i> , deg.  | γ, deg.                     | Z        |
| non                                  | e               | P2                | $c_1/c$           | 90               | 111.09(2)        | 90                          | 2        |
| Ref.                                 | Verbist, J.J.;H | amilton, W.C.;Koe | tzle, T.F.;Lehman | n, M.S., Journal | of Chemical Phys | ics ( <b>1972</b> ), 56, 32 | 57-3264  |

#### Notes

Two other structures of  $FeCl_2$ ·4H<sub>2</sub>O are reported in the ICSD database under the ICSD codes #9198 and #26508. Their calculated patterns are referred to as PDF #01-071-0668 and #01-074-0833.





#### FeCl<sub>2</sub>·2H<sub>2</sub>O

#### Structural parameters

| Formula                              | ICSD #                                                                                                              | <b>PDF</b> #(c) | <b>PDF</b> #(*) | a, Å    | b, Å    | <i>c</i> , Å | $V, Å^3$ |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|---------|---------|--------------|----------|--|
| FeCl <sub>2</sub> ·2H <sub>2</sub> O | 38012                                                                                                               | 01-077-0044     | 00-025-1040     | 7.25(3) | 8.40(3) | 3.60(2)      | 217      |  |
| Ту                                   | Type Space group                                                                                                    |                 | group           | a, deg. | β, deg. | γ, deg.      | Z        |  |
| CoCl2(I                              | H2O)2                                                                                                               | <i>C</i> 2      | 2/m             | 90      | 98.2    | 90           | 2        |  |
| Ref.                                 | <b>Ref.</b> Schneider, W.;Weitzel, H., <i>Acta Crystallographica A</i> (24,1968-38,1982) ( <b>1976</b> ), 32, 32-37 |                 |                 |         |         |              |          |  |

#### Notes

Another structure of  $FeCl_2 \cdot 2H_2O$  is reported in the ICSD database under the ICSD code #15597. Its calculated pattern is referred to as PDF #01-072-0268.

#### Crystal structure images



Fig. S9 Crystal structure of FeCl<sub>2</sub>·2H<sub>2</sub>O viewed along the c axis (left); detailed view of one edge-sharing chain (right)

#### FeCl<sub>2</sub>

#### Structural parameters

| Formula           | ICSD #                                                                                                         | <b>PDF</b> #(c) | <b>PDF #(B)</b> | a, Å            | b, Å            | c, Å     | $V, Å^3$ |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|----------|----------|--|--|
| FeCl <sub>2</sub> | 27810                                                                                                          | 01-074-1862     | 00-001-1106     | 3.58            | 3.58            | 17.53999 | 194.68   |  |  |
| Ту                | Type Space group                                                                                               |                 | group           | $\alpha$ , deg. | <i>β</i> , deg. | γ, deg.  | Z        |  |  |
| CdCl              | CdCl2(3R) <i>R-3m</i>                                                                                          |                 | 3 <i>m</i>      | 90              | 90              | 120      | 3        |  |  |
|                   | Herpin, A.; Meriel, P., Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences (1884 - 1965) (195 |                 |                 |                 |                 |          |          |  |  |
| Ref.              | 245, 650-653 ; Atti della Accademia Nazionale dei Lincei, Classe di Fisiche, Matematiche e Naturali, Rendico   |                 |                 |                 |                 |          |          |  |  |
|                   | ( <b>1929</b> ), 9, 782-                                                                                       | -789            |                 |                 |                 |          |          |  |  |

#### Notes

Four other structures of  $FeCl_2$  are reported in the ICSD database under the ICSD codes #4059, #64831, #64830 and #44397. Their calculated patterns are referred to as PDF #01-070-1634, #01-085-1438, #01-085-1437 and #01-089-3732.



Fig. S10 Crystal structure of  $FeCl_2$  viewed along the *b* axis (left); detailed view of one layer showing the edge-sharing geometry (with bold black lines; right)

#### FeCl<sub>3</sub>·6H<sub>2</sub>O

#### Structural parameters

| Formula                                                          | ICSD # | <b>PDF</b> #(c) | <b>PDF</b> #(*) | a, Å            | b, Å     | c, Å    | $V, Å^3$ |  |
|------------------------------------------------------------------|--------|-----------------|-----------------|-----------------|----------|---------|----------|--|
| FeCl <sub>3</sub> ·6H <sub>2</sub> O                             | 30453  | 01-075-1069     | 00-033-0645     | 11.89(2)        | 7.07(1)  | 5.99(1) | 495.1    |  |
| Туре                                                             |        | Space group     |                 | $\alpha$ , deg. | β, deg.  | γ, deg. | Z        |  |
| -                                                                |        | C2/m            |                 | 90              | 100.5(2) | 90      | 2        |  |
| Ref. Lind, M.D., Journal of Chemical Physics (1967), 47, 990-993 |        |                 |                 |                 |          |         |          |  |

#### Crystal structure images



Fig. S11 Crystal structure of FeCl<sub>3</sub>·6H<sub>2</sub>O viewed along the *b* axis (left); asymmetric unit (right)

#### FeOCl

#### Structural parameters

| Formula | ICSD #         | <b>PDF</b> #(c)     | <b>PDF</b> #( <b>I</b> ) | a, Å             | b, Å             | c, Å                       | $V, Å^3$                |
|---------|----------------|---------------------|--------------------------|------------------|------------------|----------------------------|-------------------------|
| FeOCl   | 40963          | 01-073-2229         | 00-039-0612              | 3.773(1)         | 7.9096(1)        | 3.3010(1)                  | 98.51                   |
| Туре    |                | Space group         |                          | $\alpha$ , deg.  | β, deg.          | γ, deg.                    | Ζ                       |
| FeOCl   |                | Pmnm                |                          | 90               | 90               | 90                         | 2                       |
| Dof     | Kauzlarich, S. | M.;Stanton, J.L.;Fa | aber, J.jr;Averill, E    | B.A., Journal of | the American Che | emical Society ( <b>19</b> | <b>86</b> ), 108, 7946- |
| Kel.    | 7951           |                     |                          |                  |                  |                            |                         |

#### Notes

Three other structures of FeOCl are reported in the ICSD database under the ICSD codes #16013, #27136 and #167393. Their calculated patterns are referred to as PDF #01-072-0619, #01-074-1369 and none.



Fig. S12 Crystal structure of FeOCl viewed along the *a* axis (left); detailed view of one layer showing the edge-sharing geometry (right)

#### FeCl<sub>3</sub>

#### Structural parameters

| Formula                                                                   | ICSD # | PDF #(c)    | <b>PDF</b> #( <b>B</b> ) | a, Å            | b, Å     | <i>c</i> , Å | $V, Å^3$ |
|---------------------------------------------------------------------------|--------|-------------|--------------------------|-----------------|----------|--------------|----------|
| FeCl <sub>3</sub>                                                         | 39764  | 01-077-0997 | 00-001-1059              | 6.056(2)        | 6.056(2) | 17.407(7)    | 552.87   |
| Туре                                                                      |        | Space group |                          | $\alpha$ , deg. | β, deg.  | γ, deg.      | Z        |
| BiI3                                                                      |        | <i>R</i> -3 |                          | 90              | 90       | 120          | 6        |
| Ref. Troyanov, S.I., Zhurnal Neorganicheskoi Khimii (1993), 38, 1946-1949 |        |             |                          |                 |          |              |          |

#### Notes

Five other structures of  $\text{FeCl}_3$  are reported in the ICSD database under the ICSD codes #27500, #39766, #39765, #63329 and #151400. Their calculated patterns are referred to as PDF #01-074-1658, #01-077-0999, #01-077-0998, #00-078-2123 and none.



Fig. S13 Crystal structure of FeCl<sub>3</sub> viewed along the [110] direction (left); detailed view of one layer showing the edge-sharing geometry (right)

#### Crystal structures of iron oxide hydroxides

#### γ-FeOOH

#### Structural parameters

| Formula     | ICSD #                                     | <b>PDF</b> #(c)     | <b>PDF</b> #(*)    | <i>a</i> , Å     | b, Å              | <i>c</i> , Å     | $V, Å^3$        |  |  |
|-------------|--------------------------------------------|---------------------|--------------------|------------------|-------------------|------------------|-----------------|--|--|
| FeOOH       | 93948                                      | 01-074-1877         | 00-044-1415        | 3.072(2)         | 12.516(3)         | 3.873(2)         | 148.91          |  |  |
| Туре        |                                            | Space group         |                    | $\alpha$ , deg.  | <i>β</i> , deg.   | γ, deg.          | Z               |  |  |
| AlOOH(oS16) |                                            | Стст                |                    | 90               | 90                | 90               | 4               |  |  |
| Dof         | Zhukhlistov, A                             | A.P., Kristallograf | iya (2001), 46(5), | , 805-808; Cryst | tallography Repor | ts (2001), 46, 7 | '30-733; Golden |  |  |
| Kel.        | Book of Phase Transitions (2002), 1, 1-123 |                     |                    |                  |                   |                  |                 |  |  |

#### Notes

Four other structures of  $\gamma$ -FeOOH are reported in the ICSD database under the ICSD codes #24885, #27846, #37159 and #108876. Their calculated patterns are referred to as PDF #01-073-2326, #01-074-1877, #01-076-2301 and none.



Fig. S14 Crystal structure of  $\gamma$ -FeOOH viewed along the *c* axis (left); detailed view of one layer showing the edgesharing geometry (right)



Fig. S15 Comparison of the crystal structure of γ-FeOOH (left) and FeOCl (right); this shows the similarity between the two structures where the chlorides Cl<sup>-</sup> and hydroxides OH<sup>-</sup> occupy the same positions

#### Thermogravimetric analysis

The thermal behaviour of each precursor and product has been investigated by thermogravimetric analysis under inert nitrogen gas on a Shimadzu TGA-50 thermogravimetric analyser instrument from 25 to 600  $^{\circ}$ C with a heating ramp of 5  $^{\circ}$ C.min<sup>-1</sup>.

#### TG analysis of the iron chloride precursors



**Fig. S16** TGA diagrams (and their 1<sup>st</sup> derivative) of FeCl<sub>3</sub>·6H<sub>2</sub>O (orange line), FeOCl (red line) obtained by thermal treatment of FeCl<sub>3</sub>·6H<sub>2</sub>O, FeCl<sub>2</sub>·4H<sub>2</sub>O (green line) and FeCl<sub>2</sub>·2H<sub>2</sub>O (dark green line) obtained by thermal treatment of FeCl<sub>2</sub>·4H<sub>2</sub>O

Note on the TG profile of the FeOCl sample obtained by thermal treatment of FeCl<sub>3</sub>·6H<sub>2</sub>O under vacuum:

According to the TG curve, the compound loses 20.35% of weight at 430 °C. This loss is characteristic of FeOCl, which decomposes into  $Fe_2O_3$  and gaseous FeCl<sub>3</sub>. Considering the initial weight used for the measurement (10.568 mg), 20.35% corresponds to 2.15 mg, i.e. 0.01325 mmol of FeCl<sub>3</sub>. According to the chemical reaction of decomposition, 3 FeOCl give rise to 1 FeCl<sub>3</sub>; therefore the initial amount of FeOCl is 4.26 mg. Finally, we can conclude that FeOCl contributes to 40.3% of the total weight of the thermally treated FeCl<sub>3</sub>·6H<sub>2</sub>O.

#### TG analysis of the fluorinated powders



**Fig. S17** TGA diagrams of the fluorinated powders of FeCl<sub>2</sub>·4H<sub>2</sub>O (orange line), FeCl<sub>2</sub>·2H<sub>2</sub>O (red line) and FeOCl (black line), obtained by the one-shot procedure at 350 °C for 15 hrs (left); zoom on the range 25-250 °C (right)

#### Mössbauer spectroscopy

#### Iron chloride precursors

Mössbauer spectra



Fig. S18 Mössbauer spectra of the iron chloride precursors

#### Comments on the Mössbauer spectroscopy of the iron chloride precursors

The Mössbauer spectra of  $FeCl_2 \cdot 4H_2O$  and  $FeCl_2 \cdot 2H_2O$  are similar: the re-hydration of the dihydrate phase can occur rather quickly after being exposed to air.



**Fig. S19** XRD patterns of FeCl<sub>2</sub>·4H<sub>2</sub>O thermally treated under vacuum at 120 °C for 15 hrs, and the simulation of FeCl<sub>2</sub>·2H<sub>2</sub>O (black line); the same powder exposed to air humidity for 2 hrs, and the simulation of FeCl<sub>2</sub>·4H<sub>2</sub>O (blue line)

Iron fluoride products

Mössbauer spectra



Fig. S20 Mössbauer spectra of the iron chloride precursors

#### **Fitting parameters**

Table S1: Room-temperature Mössbauer parameters for the iron chlorides precursors and their corresponding fluorinated samples; as extracted from the previous Figures S22 and S23.

|                                         | $\delta$ , mm/s <sup>a</sup>              | <b>Д</b> , <i>mm/s<sup>b</sup></i> | FWHM,<br>mm/s | H, Tesla | %    | Attribution                          |
|-----------------------------------------|-------------------------------------------|------------------------------------|---------------|----------|------|--------------------------------------|
| Spectra with magn                       | etic component                            | S                                  |               |          |      |                                      |
| E-OCI                                   | 0.37                                      | 0.90                               | 0.36          | -        | 55   | FeOCl                                |
| FeOCI                                   | 0.26                                      | 0.54                               | 0.26          | -        | 45   | FeOOH                                |
|                                         | 1.22                                      | 2.98                               | 0.26          | -        | 86   | FeCl <sub>2</sub> ·4H <sub>2</sub> O |
| FeCl <sub>2</sub> ·4H <sub>2</sub> O    | 0.35                                      | 0.54                               | 0.28          | -        | 7    | FeOOH                                |
|                                         | 0.36                                      | 0.90                               | 0.28          | -        | 7    | FeOCl                                |
|                                         | 1.22                                      | 2.96                               | 0.26          | -        | 78   | FeCl <sub>2</sub> ·4H <sub>2</sub> O |
| FeCl <sub>2</sub> ·2H <sub>2</sub> O    | 0.36                                      | 0.54                               | 0.27          | -        | 10   | FeOOH                                |
|                                         | 0.37                                      | 0.90                               | 0.27          | -        | 10   | FeOCl                                |
| Spectra with magn                       | etically-ordered                          | l components                       |               |          |      |                                      |
|                                         | 0.46                                      | 0.17                               | 0.47          | 0        | 50   | HTB- FeF <sub>3</sub>                |
| ex FeCl <sub>2</sub> ·4H <sub>2</sub> O | 0.49                                      | 0.01                               | 0.43          | 40.4     | 35   | r-FeF <sub>3</sub>                   |
|                                         | 0.49                                      | -0.15                              | 1.3           | 33.8     | 15   | am-FeF <sub>3</sub>                  |
|                                         | 0.46                                      | 0.25                               | 0.77          | 0        | 22   | HTB- FeF <sub>3</sub>                |
| ex FeCl <sub>2</sub> ·2H <sub>2</sub> O | 0.49                                      | 0.02                               | 0.42          | 40.6     | 67   | r-FeF <sub>3</sub>                   |
|                                         | 0.49                                      | -0.16                              | 0.92          | 35.2     | 11   | am-FeF <sub>3</sub>                  |
|                                         | 0.43                                      | 0.51                               | 0.52          | 0        | 42.6 | $FeO(OH)_{1-x}\overline{F_x}$        |
| ov FoOCI                                | 0.49                                      | 0.05                               | 0.41          | 40.3     | 29.4 | r-FeF <sub>3</sub>                   |
| CA I COUL                               | 0.49                                      | -0.02                              | 0.41          | 35.1     | 25.1 | am-FeF <sub>3</sub>                  |
|                                         | 0.32                                      | -0.09                              | 0.31          | 51.5     | 2.8  | Fe <sub>2</sub> O <sub>3</sub>       |
|                                         | <sup>a</sup> Isomeric shift; <sup>b</sup> | Quadrupole splitting               |               |          |      |                                      |