## **Electronic Supplementary Information (ESI)** for

Achiral diamondoid or chiral quartz net: the effect of substituents in the topologies and catenation of coordination polymers based on tetrahedral Cd(COO)4 building units

Xiao-Feng Wang, \*<sup>a,b</sup> Yue-Biao Zhang,<sup>b</sup> and Yan-Yong Lin<sup>b</sup>

- <sup>a</sup> School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China.
- <sup>b</sup> MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China.

\*To whom correspondence should be addressed.

xfwang518@yahoo.com.cn

Tel: (86)-0734-8282375.

| $1^{a}$       |            | $2^b$           |           | <b>3</b> <sup>c</sup> |           | $4^d$         |           |
|---------------|------------|-----------------|-----------|-----------------------|-----------|---------------|-----------|
| Cd1-O1        | 2.302(4)   | Cd1-O1          | 2.327(11) | Cd1-O1                | 2.370(9)  | Cd1-O1        | 2.414(8)  |
| Cd1-O2        | 2.688(5)   | Cd1-O2          | 2.547(15) | Cd1-O2                | 2.462(10) | Cd1-O2        | 2.384(10) |
| Cd1-O3#1      | 2.465(4)   | Cd1-O4#2        | 2.227(14) |                       | · · ·     |               |           |
| Cd1-O4#1      | 2.385(6)   | Cd1-O5          | 2.611(11) | O1-Cd1-O1#1           | 105.7(3)  | O1-Cd1-O1#1   | 106.8(3)  |
|               |            | Cd1-O6          | 2.288(10) | O1-Cd1-O2#1           | 79.1(3)   | O1-Cd1-O2#1   | 79.1(3)   |
| O1-Cd1-O1#2   | 117.77(14) | Cd1-O7#3        | 2.288(12) | O1-Cd1-O1#2           | 135.0(4)  | O1-Cd1-O1#2   | 138.8(3)  |
| O1-Cd1-O3#1   | 125.51(13) | Cd1-O8#3        | 2.679(17) | O1-Cd1-O2#2           | 91.1(3)   | O1-Cd1-O2#2   | 94.2(3)   |
| O1-Cd1-O4#1   | 93.48(15)  | Cd2-O9          | 2.290(13) | O1-Cd1-O1#3           | 91.2(3)   | O1-Cd1-O1#3   | 87.7(3)   |
| O1#2-Cd1-O2   | 81.19(14)  | Cd2-O10         | 2.606(14) | O1-Cd1-O2#3           | 139.8(4)  | O1-Cd1-O2#3   | 135.7(4)  |
| O2-Cd1-O2#2   | 81.83(17)  | Cd2-O11#1       | 2.382(12) | O2-Cd1-O2#1           | 99.0(3)   | O2-Cd1-O2#1   | 97.2(3)   |
| O2-Cd1-O3#1   | 84.10(13)  | Cd2-O12#1       | 2.498(13) | O2#1-Cd1-O2#3         | 82.7(3)   | O2#1-Cd1-O2#3 | 83.5(3)   |
| O2-Cd1-O4#1   | 91.39(18)  |                 |           | O2-Cd1-O2#3           | 166.1(3)  | O2-Cd1-O2#3   | 170.7(4)  |
| O1#2-Cd1-O3#1 | 75.88(13)  | O1-Cd1-O5       | 89.3(3)   |                       |           |               |           |
| O1#2-Cd1-O4#1 | 129.40(13) | O1-Cd1-O6       | 127.9(4)  |                       |           |               |           |
| O2#2-Cd1-O3#1 | 126.55(12) | O1-Cd1-O4#2     | 127.4(4)  |                       |           |               |           |
| O2#2-Cd1-O4#1 | 173.08(18) | O1-Cd1-O7#3     | 84.0(4)   |                       |           |               |           |
| O3#1-Cd1-O3#3 | 141.95     | O1-Cd1-O8#3     | 125.1(4)  |                       |           |               |           |
| O3#3-Cd1-O4#1 | 98.96      | O2-Cd1-O4#2     | 99.9(5)   |                       |           |               |           |
| O4#1-Cd1-O4#3 | 95.42      | O2-Cd1-O5       | 83.8(4)   |                       |           |               |           |
|               |            | O2-Cd1-O6       | 85.0(4)   |                       |           |               |           |
|               |            | O2-Cd1-O7#3     | 136.4(4)  |                       |           |               |           |
|               |            | O2-Cd1-O8#3     | 162.7(5)  |                       |           |               |           |
|               |            | O4#2-Cd1-O5     | 136.7(4)  |                       |           |               |           |
|               |            | O4#2-Cd1-O6     | 84.1(4)   |                       |           |               |           |
|               |            | O4#2-Cd1-O7#3   | 102.0(5)  |                       |           |               |           |
|               |            | O4#2-Cd1-O8#3   | 93.5(5)   |                       |           |               |           |
|               |            | O5-Cd1-O7#3     | 104.3(4)  |                       |           |               |           |
|               |            | O5-Cd1-O8#3     | 79.0(4)   |                       |           |               |           |
|               |            | O6-Cd1-O7#3     | 134.2(4)  |                       |           |               |           |
|               |            | O6-Cd1-O8#3     | 85.6(4)   |                       |           |               |           |
|               |            | O9-Cd2-O10#4    | 82.9(5)   |                       |           |               |           |
|               |            | O9-Cd2-O11#1    | 86.9(4)   |                       |           |               |           |
|               |            | O9-Cd2-O12#1    | 121.4(5)  |                       |           |               |           |
|               |            | O10-Cd2-O10#4   | 92.0(4)   |                       |           |               |           |
|               |            | O10-Cd2-O11#1   | 130.2(4)  |                       |           |               |           |
|               |            | O10-Cd2-O12#1   | 167.3(4)  |                       |           |               |           |
|               |            | O11#1-Cd2-O11#5 | 89.2(4)   |                       |           |               |           |
|               |            | O12#1-Cd2-O12#5 | 116.0(4)  |                       |           |               |           |

Table S1 Selection bond lengths (Å) and angles (°) for 1-4

<sup>*a*</sup> Symmetry transformations used to generate equivalent atoms: #1 = 1/2+x, 1/2+y, z; #2 = -x, -y, z; #3 = -3/4+x, -1/4-y, -1/4+z.

<sup>b</sup> Symmetry transformations used to generate equivalent atoms: #1 = -1/4-x, 1/4+y,

-1/4+z; #2 = -1/4+x, -1/4-y, 1/4+z; #3 = 1/4+x, -3/4-y, 1/4+z; #4 = -x, -y, z. #5 = 1/4+x, -1/4-y, -1/4+z.

<sup>*c*</sup> Symmetry transformations used to generate equivalent atoms: #1 = 1-x, 1-y, z; #2 = 1-y, 1-x, -1/3-z; #3 = y, x, -1/3-z.

<sup>*d*</sup> Symmetry transformations used to generate equivalent atoms: #1 = 1-x, 1-y, z; #2 = 1-y, 1-x, -1/3-z; #3 = y, x, -1/3-z.



b)









Figure S1. The asymmetric units of 1-4.



Figure S2. The FT-IR patterns of 1-4.



Figure S3. The TGA curve of 1.



Figure S4. The TGA curve of 2.



Figure S5. The TGA curve of 3.



Figure S6. The TGA curve of 4.