SUPPORTING INFORMATION FOR MANUSCRIPT

Study of the thermal processes in molecular crystals of peptides by means of NMR Crystallography

Tomasz Pawlak, Piotr Paluch, Katarzyna Trzeciak-Karlikowska, Agata Jeziorna and M. J. Potrzebowski.

1) Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, 90-363 Lodz, Poland.

EXPERIMENTAL – 2D PASS NMR Spectroscopy

A 5- π pulse 2D PASS scheme and 1000 and 2000 Hz sample spinning speeds were used in the 2D experiments on a BRUKER Avance III 400 spectrometer at a frequency of 100.613 MHz for ¹³C equipped with a MAS probe head using 4 mm ZrO₂ rotors.. The π -pulse length was 8 μ s. Sixteen t_1 increments using the timings described by Levitt and co-workers were used in the 2D PASS experiments.¹ For each increment, 360 scans were accumulated. Because the pulse positions in the t_1 set return to their original positions after a full cycle and the t_1 -FID forms a full echo, the 16-point experimental t_1 data were replicated to 256 points. After the Fourier transformation in the direct dimension, the 2D spectrum. One-dimensional CSA spinning sideband patterns were obtained from t_1 slices taken at the isotropic chemical shifts in the t_2 dimension of the 2D spectrum. The magnitudes of the principal elements of the CSA tensor were obtained from the best-fit simulated spinning sideband pattern. Simulations of the spinning CSA sideband spectra were performed on a PC using the Topspin program.

RESULTS AND DISCUSSION

In this work, we employed the 2D PASS sequence for analysis of ¹³C spectra.¹ This technique offers good sensitivity compared to other methods. This paper, we reported ¹³C δ_{ii} parameters for samples **1** and **2** analyzing 2D PASS spectra recorded at 2000 and 1000 Hz spinning rate. The Figure S1 and S2 displays the example 2D PASS spectrum of **1** and **2** measured with a sample rotation 2000 Hz. The spectrum exhibits a complex pattern under slow sample spinning. Using proper data shearing (Figure S1B and S2B), it is possible to separate the spinning sidebands for each carbon and to use a calculational procedure to establish the ¹³C δ_{ii} parameters. It is clear from such a presentation that the F2 projection corresponds to the infinite spinning speed spectrum, whereas F1 represents CSA. A similar procedure was employed to study **1**. The values of all ¹³C δ_{ii} parameters for **1** and **2** are presented in Table S1 and S2.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013

Figure S1. 2D PASS spectra for **1** recorded with a spinning rate of 2000 Hz (A) and the aliphatic part of spectrum after data shearing (B).

Figure S2. 2D PASS spectra for **2** recorded with a spinning rate of 2000 Hz (A) and the aliphatic part of spectrum after data shearing (B).

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2013

Figure S3. Correlation of the experimental isotropic chemical shift (δ iso) versus the computed isotropic nuclear shielding (σ _{iso}) parameters (¹H –A, C and ¹³C –B, D) for structure **2**. Calculations were done with increase (A and B) and decrease (C and D) unit cell dimensions of 10%.

Figure S4. The ¹³C NMR experimental spectrum of sample 1 and 2 recorded with spinning rate 55 kHz (Figure A and C respectively). The ¹³C NMR simulated spectrum of sample 1 and 2 processed with line broadening equal to 70 Hz (GIPAW results).

Atom	δ_{iso}	δ ₁₁	δ_{22}	δ ₃₃	Ω^{a}	ь к
C-10	168.9	243	173	91	152	0.08
C-11	54.8	69	58	37	32	0.30
C-12	35.8	46	44	17	29	0.85
C-13	125.3	221	150	5	216	0.34
C-14	129.7	239	142	8	231	0.16
C-15	114.4	194	124	25	169	0.17
C-16	155.8	247	157	63	184	0.02
C-17	117.2	198	134	20	178	0.28
C-18	130.9	223	149	21	202	0.27
C-20	171.5	246	185	84	162	0.25
C-21	47.4	66	52	24	42	0.33
C-22	17.8	32	29	-7	39	0.86
C-30	171.5	246	185	84	162	0.25
C-31	53.5	73	55	33	40	0.11
C-32	37.0	52	30	30	22	-0.95
C-33	136.6	229	166	15	214	0.41
C-34	130.9	223	149	21	202	0.27
C-35	127.2	224	153	5	219	0.35
C-36	127.2	224	153	5	219	0.35
C-37	127.2	224	153	5	219	0.35
C-38	130.9	223	149	21	202	0.27
C-40	175.2	236	176	114	122	0.02
C-41	44.4	66	50	17	49	0.34

 Table S1. Experimental NMR chemical shift tensors [in ppm] for structure 1.

^a Span is expressed as: $\Omega = \delta_{11} - \delta_{33}$

 b Skew is expressed as: κ = ($\delta_{22}-\delta_{iso})/\Omega$

Atom	δ_{iso}	δ_{11}	δ_{22}	δ ₃₃	Ω^{a}	ь К
C-10	169.2	249	169	90	159	0.00
C-11	54.3	72	47	44	28	-0.79
C-12	35.0	48	29	28	20	-0.90
C-13	123.7	218	143	10	208	0.28
C-14	129.5	222	143	25	197	0.21
C-15	115.1	197	126	23	174	0.19
C-16	156.7	245	164	61	185	0.12
C-17	116.3	191	133	25	166	0.30
C-18	129.5	222	143	25	197	0.21
C-20	169.8	251	171	87	163	0.02
C-21	47.2	68	46	29	39	-0.09
C-22	17.0	_ ^c	_ ^c	_ ^c	_c	_ ^c
C-30	171.7	243	184	88	155	0.24
C-31	54.3	72	47	44	28	-0.79
C-32	36.5	55	28	27	28	-0.91
C-33	137.5	230	168	14	216	0.42
C-34	129.5	222	141	26	196	0.17
C-35	127.1	226	145	10	216	0.25
C-36	127.1	226	145	10	216	0.25
C-37	127.1	226	145	10	216	0.25
C-38	129.5	222	143	25	197	0.21
C-40	176.1	238	172	118	120	-0.10
C-41	42.8	70	41	18	52	-0.10

 Table S2. Experimental NMR chemical shift tensors [in ppm] for structure 2.

^a Span is expressed as: $\Omega = \delta_{11} - \delta_{33}$

^b Skew is expressed as: $\kappa = (\delta_{22} - \delta_{iso})/\Omega$

^c Experimental data can not be obtained

Table S3. CASTEP calculations. NMR chemical shift tensors [in ppm] for structure **1** calculated using PBE0 functional with ultrasoft pseudopotential and GIPAW approach. Geometry (only hydrogen positions) was optimized with PBE0 functional and ultrasoft pseudopotential. Cut-off energy was: 550 eV. The chemical shifts were calculated from shielding parameters (σ_i) using the equations: $\delta_i = 171.0 - \sigma_i$.(C).

Atom	δ_{iso}	δ ₁₁	δ_{22}	δ ₃₃	Ω^{a}	к ^b
C-10	168.4	243.4	171.9	89.9	153.5	0.07
C-11	53.6	65.2	55.3	40.4	24.8	0.20
C-12	36.3	51.7	46.1	11.2	40.5	0.73
C-13	124.7	220.2	148.6	5.3	214.9	0.33
C-14	132.4	233.3	152.3	11.5	221.9	0.27
C-15	115.7	201.8	130.9	14.5	187.3	0.24
C-16	161.1	243.4	174.5	65.5	178.0	0.23
C-17	118.8	201.4	140.8	14.2	187.2	0.35
C-18	129.8	231.0	130.3	28.1	203.0	0.01
C-20	170.6	244.3	176.1	91.3	153.0	0.11
C-21	45.7	64.0	50.0	23.2	40.8	0.31
C-22	14.3	30.8	18.1	-5.9	36.7	0.31
C-30	168.7	238.6	179.2	88.4	150.2	0.21
C-31	52.6	71.9	57.6	28.4	43.6	0.34
C-32	38.6	51.1	44.5	20.3	30.8	0.57
C-33	139.0	237.8	173.7	5.4	232.4	0.45
C-34	135.0	240.2	150.7	14.0	226.2	0.21
C-35	131.6	241.8	144.5	8.4	233.5	0.17
C-36	125.6	231.2	146.5	-0.9	232.2	0.27
C-37	130.7	236.5	150.9	4.7	231.8	0.26
C-38	132.0	238.8	137.7	19.6	219.2	0.08
C-40	162.6	226.2	168.9	92.8	133.4	0.14
C-41	43.1	64.3	47.8	17.3	47.0	0.30

^a Span is expressed as: $\Omega = \delta_{11} - \delta_{33}$

Table S4. CASTEP calculations. NMR chemical shift tensors [in ppm] for structure **1** calculated using PBE0 functional with ultrasoft pseudopotential and GIPAW approach. Geometry (all positions) was optimized with PBE0 functional and ultrasoft pseudopotential. Cut-off energy was: 550 eV. The chemical shifts were calculated from shielding parameters (σ_i) using the equations: $\delta_i = 168.8 - \sigma_i.(C)$.

Atom	δ_{iso}	δ_{11}	δ_{22}	δ ₃₃	Ω^{a}	ь к
C-10	171.0	244.1	181.9	86.9	157.2	0.21
C-11	53.7	63.7	52.0	45.3	18.4	-0.28
C-12	33.5	47.7	41.0	11.9	35.8	0.63
C-13	123.3	219.1	147.2	3.6	215.5	0.33
C-14	130.1	234.3	145.7	10.4	224.0	0.21
C-15	114.4	199.0	131.7	12.4	186.6	0.28
C-16	159.9	243.3	174.0	62.3	181.1	0.23
C-17	116.8	200.7	137.8	12.0	188.7	0.33
C-18	129.9	232.3	137.0	20.3	212.0	0.10
C-20	167.2	244.3	167.6	89.8	154.5	0.01
C-21	47.3	69.2	45.6	27.0	42.2	-0.12
C-22	12.4	26.8	16.8	-6.5	33.3	0.40
C-30	171.6	240.3	186.2	88.4	151.9	0.29
C-31	50.9	72.9	54.1	25.7	47.2	0.20
C-32	35.0	47.4	41.1	16.7	30.7	0.59
C-33	138.4	238.0	173.4	3.7	234.3	0.45
C-34	134.1	240.0	151.3	10.9	229.2	0.23
C-35	128.8	237.3	144.3	4.8	232.5	0.20
C-36	128.0	235.1	151.5	-2.7	237.8	0.30
C-37	131.6	240.3	151.5	2.9	237.4	0.25
C-38	129.0	235.0	135.2	16.9	218.1	0.08
C-40	179.5	245.8	187.3	105.4	140.4	0.17
C-41	44.8	64.8	47.5	22.1	42.7	0.19

^a Span is expressed as: $\Omega = \delta_{11} - \delta_{33}$

Table S5. CASTEP calculations. NMR chemical shift tensors [in ppm] for structure **2** calculated using PBE0 functional with ultrasoft pseudopotential and GIPAW approach. Geometry (all positions) was optimized with PBE0 functional and ultrasoft pseudopotential. Cut-off energy was: 550 eV. The chemical shifts were calculated from shielding parameters (σ_i) using the equations: $\delta_i = 168.5 - \sigma_i.(C)$.

Atom	δ_{iso}	δ_{11}	δ_{22}	δ ₃₃	Ω^{a}	к ^b
C-10	166.9	245.3	165.8	89.8	155.5	-0.02
C-11	52.6	62.0	51.4	44.3	17.6	-0.20
C-12	34.2	49.6	40.7	12.5	37.0	0.52
C-13	123.3	219.2	147.2	3.4	215.8	0.33
C-14	130.8	234.6	148.4	9.3	225.3	0.23
C-15	114.2	199.2	131.0	12.5	186.8	0.27
C-16	159.5	243.2	173.1	62.2	181.0	0.23
C-17	116.5	200.0	137.4	12.1	187.9	0.33
C-18	129.6	231.5	134.9	22.3	209.2	0.08
C-20	168.9	243.9	172.4	90.4	153.5	0.07
C-21	46.4	68.3	45.4	25.5	42.9	-0.07
C-22	13.2	29.1	17.1	-6.4	35.5	0.32
C-30	172.4	239.7	188.7	88.9	150.8	0.32
C-31	50.8	72.2	55.3	24.8	47.4	0.29
C-32	34.7	46.6	40.3	17.2	29.4	0.57
C-33	138.1	236.9	173.7	3.8	233.1	0.46
C-34	132.4	238.7	147.6	11.0	227.7	0.20
C-35	128.3	237.8	142.5	4.6	233.1	0.18
C-36	128.2	236.1	151.1	-2.5	238.7	0.29
C-37	130.8	240.1	150.1	2.4	237.7	0.24
C-38	128.9	234.5	135.1	17.2	217.4	0.08
C-40	178.8	245.0	187.4	104.0	141.0	0.18
C-41	43.9	63.2	48.0	20.6	42.6	0.29

^a Span is expressed as: $\Omega = \delta_{11} - \delta_{33}$

Table S6. Quantum Espresso calculations. NMR chemical shift tensors [in ppm] for structure **1** calculated using PBE0 functional with of the norm-conserving Troullier–Martins pseudopotential and GIPAW approach. Geometry (all positions) was optimized with PBE0 functional and norm-conserving Troullier–Martins pseudopotential. Cut-off energy was: 60 Ryd. The chemical shifts were calculated from shielding parameters (σ_i) using the equations: $\delta_i = 163.1 - \sigma_i.(C)$.

Atom	δ_{iso}	δ ₁₁	δ_{22}	δ ₃₃	Ω^{a}	ь к
C-10	175.3	250.8	189.1	86.1	164.7	0.25
C-11	51.7	62.2	50.5	42.5	19.7	-0.18
C-12	30.7	45.6	38.0	8.6	36.9	0.59
C-13	123.1	221.2	147.8	0.3	221.0	0.34
C-14	129.7	234.6	148.7	5.9	228.7	0.25
C-15	112.7	199.9	131.4	6.9	193.0	0.29
C-16	161.3	246.4	176.4	61.0	185.4	0.24
C-17	118.4	205.0	144.1	6.2	198.8	0.39
C-18	129.4	232.7	138.7	16.7	216.1	0.13
C-20	171.0	249.8	175.1	87.9	161.9	0.08
C-21	46.4	69.0	43.1	27.2	41.8	-0.24
C-22	10.6	25.9	15.8	-10.0	35.9	0.43
C-30	175.2	245.0	194.1	86.4	158.7	0.36
C-31	51.0	72.0	56.4	24.7	47.3	0.34
C-32	32.8	44.6	38.6	15.3	29.3	0.59
C-33	138.1	240.2	173.8	0.3	239.8	0.45
C-34	131.7	240.4	148.0	6.6	233.8	0.21
C-35	127.2	239.1	142.7	-0.3	239.4	0.19
C-36	127.1	237.2	152.4	-8.4	245.6	0.31
C-37	130.9	242.1	153.2	-2.8	244.9	0.27
C-38	127.1	235.1	135.7	10.6	224.5	0.11
C-40	186.3	256.2	197.1	105.5	150.7	0.22
C-41	43.5	63.8	46.3	20.4	43.4	0.19

Table S7. Quantum Espresso calculations. NMR chemical shift tensors [in ppm] for structure **1** calculated using PBE0 functional with of the norm-conserving Troullier–Martins pseudopotential and GIPAW approach. Geometry (all positions) was optimized with PBE0 functional and norm-conserving Troullier–Martins pseudopotential. The van der Waals (vdW) interactions were included using vdW-DF exchange-correlation Cut-off energy was: 60 Ryd. The chemical shifts were calculated from shielding parameters (σ_i) using the equations: $\delta_i = 164.1 - \sigma_i$.(C).

Atom	δ_{iso}	δ_{11}	δ_{22}	δ ₃₃	Ω^{a}	к ^b
C-10	175.6	242.8	199.1	85.0	157.8	0.45
C-11	52.4	62.0	51.1	44.2	17.8	-0.23
C-12	31.6	46.7	40.5	7.4	39.3	0.68
C-13	123.5	221.8	148.1	0.6	221.2	0.33
C-14	130.6	234.2	149.5	8.2	226.1	0.25
C-15	113.6	199.7	130.8	10.3	189.4	0.27
C-16	161.4	246.6	178.0	59.6	187.0	0.27
C-17	119.0	204.0	145.0	8.0	196.1	0.40
C-18	127.3	229.2	133.1	19.6	209.7	0.08
C-20	169.3	244.5	175.9	87.6	156.8	0.13
C-21	46.1	67.2	44.0	27.3	39.9	-0.16
C-22	11.3	27.4	16.4	-10.0	37.5	0.41
C-30	173.0	236.8	196.7	85.5	151.3	0.47
C-31	50.6	70.0	58.5	23.3	46.7	0.51
C-32	34.4	47.4	39.7	16.2	31.2	0.51
C-33	137.6	240.4	172.4	0.0	240.3	0.43
C-34	132.8	240.3	148.5	9.7	230.6	0.20
C-35	128.0	238.7	144.0	1.4	237.2	0.20
C-36	127.2	236.4	151.5	-6.3	242.7	0.30
C-37	132.3	242.1	155.0	-0.4	242.5	0.28
C-38	127.6	234.2	136.0	12.6	221.6	0.11
C-40	183.9	253.5	193.8	104.4	149.0	0.20
C-41	41.8	64.2	42.5	18.8	45.5	0.05

 b Skew is expressed as: κ = ($\delta_{22}-\delta_{iso})/\Omega$

Table S8. Quantum Espresso calculations. NMR chemical shift tensors [in ppm] for structure **2** calculated using PBE0 functional with of the norm-conserving Troullier–Martins pseudopotential and GIPAW approach. Geometry (all positions) was optimized with PBE0 functional and norm-conserving Troullier–Martins pseudopotential. Cut-off energy was: 60 Ryd. The chemical shifts were calculated from shielding parameters (σ_i) using the equations: $\delta_i = 163.1 - \sigma_i.(C)$.

Atom	δ_{iso}	δ ₁₁	δ_{22}	δ ₃₃	Ω^{a}	ь к
C-10	172.5	252.9	176.6	87.8	165.1	0.08
C-11	52.5	63.0	53.2	41.3	21.8	0.09
C-12	29.2	42.9	37.8	7.0	35.8	0.71
C-13	124.4	222.6	149.7	1.0	221.6	0.34
C-14	130.2	235.9	149.9	4.9	231.1	0.26
C-15	113.9	202.6	131.1	8.1	194.6	0.26
C-16	161.3	246.4	176.2	61.3	185.1	0.24
C-17	117.2	203.5	141.3	6.8	196.7	0.37
C-18	128.1	232.4	133.3	18.7	213.7	0.07
C-20	172.8	249.5	180.2	88.8	160.7	0.14
C-21	45.2	67.7	43.9	24.1	43.5	-0.09
C-22	10.1	25.6	14.7	-9.9	35.5	0.39
C-30	174.9	244.5	192.6	87.4	157.1	0.34
C-31	51.0	72.2	57.1	23.8	48.3	0.37
C-32	31.7	44.0	36.9	14.1	29.9	0.53
C-33	137.5	239.9	172.3	0.5	239.4	0.43
C-34	131.8	240.2	148.3	6.8	233.3	0.21
C-35	127.4	239.2	143.0	0.0	239.2	0.20
C-36	127.2	237.4	152.2	-8.0	245.4	0.31
C-37	130.9	241.9	153.3	-2.4	244.3	0.27
C-38	127.1	234.7	135.1	11.3	223.4	0.11
C-40	184.1	262.2	183.2	106.8	155.5	-0.02
C-41	41.4	63.2	44.8	16.2	47.0	0.22

Table S9. Quantum Espresso calculations. NMR chemical shift tensors [in ppm] for structure **2** calculated using PBE0 functional with of the norm-conserving Troullier–Martins pseudopotential and GIPAW approach. Geometry (all positions) was optimized with PBE0 functional and norm-conserving Troullier–Martins pseudopotential. The van der Waals (vdW) interactions were included using vdW-DF exchange-correlation Cut-off energy was: 60 Ryd. The chemical shifts were calculated from shielding parameters (σ_i) using the equations: $\delta_i = 164.1 - \sigma_i$.(C).

Atom	δ_{iso}	δ ₁₁	δ_{22}	δ ₃₃	Ω^{a}	ь к
C-10	171.7	247.4	180.1	87.6	159.8	0.16
C-11	51.5	60.4	51.5	42.4	18.0	0.01
C-12	30.9	44.8	40.8	7.1	37.8	0.78
C-13	123.9	222.2	149.3	0.2	222.0	0.34
C-14	131.4	235.0	152.5	6.7	228.3	0.28
C-15	114.2	200.7	131.4	10.5	190.3	0.27
C-16	161.0	246.3	176.4	60.3	186.0	0.25
C-17	119.1	203.6	145.3	8.4	195.2	0.40
C-18	127.3	230.0	131.3	20.6	209.4	0.06
C-20	171.9	243.9	183.2	88.6	155.4	0.22
C-21	44.7	65.9	44.1	24.0	41.9	-0.04
C-22	11.0	28.5	14.8	-10.3	38.8	0.29
C-30	173.4	235.8	197.3	87.0	148.8	0.48
C-31	51.0	69.4	59.3	24.3	45.1	0.55
C-32	34.1	47.7	38.7	16.0	31.8	0.43
C-33	137.0	239.7	171.2	0.1	239.6	0.43
C-34	132.5	239.4	147.9	10.1	229.3	0.20
C-35	128.0	238.3	143.9	1.8	236.5	0.20
C-36	127.6	236.8	152.0	-6.0	242.8	0.30
C-37	132.2	242.2	154.5	-0.2	242.4	0.28
C-38	127.5	233.6	135.8	13.0	220.6	0.11
C-40	182.3	254.5	186.9	105.5	149.0	0.09
C-41	41.4	63.5	44.4	16.2	47.3	0.19

 b Skew is expressed as: κ = ($\delta_{22}-\delta_{iso})/\Omega$

Coordinates for sample 2.

0	1.054070	7.161871	6.179545
0	4.440367	1.435661	3.551614
Н	5.066213	0.772178	3.947614
Ν	2.609496	7.087253	8.704379
Н	3.108864	7.985366	8.727247
Н	3.023636	6.542297	9.539829
Н	1.582723	7.236086	8.925057
С	2.290924	7.039977	6.250627
С	2.926433	6.343360	7.456541
Н	4.021495	6.344707	7.365259
С	2.405152	4.901638	7.582887
Н	2.711710	4.520600	8.569076
Н	1.304745	4.930058	7.562115
С	2.943034	3.993963	6.508656
С	2.422902	3.989114	5.205743
Н	1.575839	4.632393	4.959720
С	2.938376	3.149052	4.221269
Н	2.515293	3.143799	3.216786
С	3.987092	2.272624	4.528465
С	4.522806	2.272624	5.822802
Н	5.328395	1.582608	6.062727
С	4.003087	3.125481	6.791840
Н	4.414770	3.095176	7.802993
0	4.552995	9.574439	3.848519
Ν	3.160327	7.439467	5.304267
Н	4.170355	7.339797	5.477684
С	3.322255	9.402305	3.880344
С	2.733576	7.992639	4.023651
Н	1.637792	8.052846	4.057000
С	3.190410	7.107726	2.864426

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013

Н	2.773226	6.098359	2.969048
Н	4.286042	7.040246	2.846894
Н	2.857103	7.527420	1.905870
0	0.978451	12.957986	4.785350
N	2.407551	10.387158	3.794207
Н	1.406548	10.143504	3.827366
С	2.163836	12.549202	4.809934
С	2.757103	11.790089	3.618313
Н	3.853271	11.852720	3.645754
С	2.217331	12.347840	2.284719
Н	1.124124	12.227697	2.276905
Н	2.430703	13.426573	2.268330
С	2.830284	11.678835	1.083569
С	2.394651	10.414500	0.657840
Н	1.549260	9.940122	1.158081
С	3.012635	9.769739	-0.414104
Н	2.660450	8.785155	-0.728541
С	4.065963	10.384195	-1.094813
Н	4.557055	9.869544	-1.921687
С	4.482523	11.657958	-0.702433
Н	5.302448	12.146075	-1.226495
С	3.871124	12.297601	0.376943
Н	4.208238	13.291209	0.683376
0	4.425016	12.635942	8.223767
0	3.075647	14.134907	9.220437
N	2.939167	12.690626	5.891788
Н	3.926480	12.420169	5.873874
С	3.389248	13.368656	8.255020
С	2.439429	13.376333	7.068926
Н	1.479679	12.931991	7.376883
Н	2.239861	14.431360	6.833574

¹ O. N. Antzutkin, S. C. Shekar, M. H. Levitt, J. Magn. Reson. Ser. A, 1995, 115, 7.