## Hydrothermal synthesis, ab-initio structure determination and NMR study of the first mixed Cu/Al fluorinated MOF.

Amandine Cadiau, Sandy Auguste, Francis Taulelle, Charlotte Martineau, and Karim Adil

| Atom | x         | У         | Z         | Beq     |
|------|-----------|-----------|-----------|---------|
| Cu   | 0         | 0         | 0         | 1.47(6) |
| Al   | 3⁄4       | 0.0646(7) | 0.0182(2) | 3.0(2)  |
| Fa   | 3⁄4       | 0.0691(1) | 0.8022(2) | 1.83(1) |
| Fb   | 0.6393(2) | 0.0634(6) | 0.9814(1) | 1.83(1) |
| Fd   | 3⁄4       | 0.8639(7) | 0.0232(2) | 1.83(1) |
| Fc   | 3⁄4       | 0.0806(1) | 0.2352(2) | 1.83(1) |
| 0    | 3⁄4       | 0.2851(1) | 0.0250(2) | 1.83(1) |
| C1   | 0.10205   | 0.23140   | 0.15310   | 4.0(2)  |
| C2   | -0.01221  | 0.22358   | 0.28127   | 4.0(2)  |
| N3   | 0.10362   | 0.34133   | 0.25426   | 4.0(2)  |
| N4   | 0.03049   | 0.33755   | 0.33885   | 4.0(2)  |
| N5   | 0.03114   | 0.15419   | 0.16461   | 4.0(2)  |
| N6   | -0.08859  | 0.18580   | 0.32656   | 4.0(2)  |
| H7   | -0.11366  | 0.23768   | 0.39875   | 8.10(1) |
| H8   | -0.11235  | 0.10984   | 0.28330   | 8.10(1) |
| H9   | 0.14269   | 0.40480   | 0.26689   | 8.10(1) |
| H10  | 0.14417   | 0.20848   | 0.08177   | 8.10(1) |

Table S1 : Atomic positions and selected bond distance

| Cu-N4 | 2.0345    | AI-FB | 1.8339(2) |
|-------|-----------|-------|-----------|
| Cu-N5 | 2.0046    | Al-FD | 1.7927(2) |
| Cu-FB | 2.3488(2) | Al-FC | 1.8042(2) |
| Al-FA | 1.7912(2) | Al-O  | 1.9709(2) |



Fig. S1. Thermal analysis of  $CuAlF_5(H_2O)[HAmTAZ]_2$  under argon.



Fig. S2. Thermodiffraction of  $CuAlF_5(H_2O)[HAmTAZ]_2$  under nitrogen.



Fig. S3.  $CuN_4F_2$  and  $AlF_5H_2O$  distorted octahedra *trans*-connected leading to inorganic chains along the *a* axis. Hydrogens are omitted for clarity.



Fig. S4. Hydrogen bonds.



Fig. S5. Layer of  $CuAlF_5(H_2O)[HAmTAZ]_2$  (left) and  $Cu(TAZ)_2(NCS)_2$  (right). Hydrogens are omitted for clarity.



Fig. S6. 19F MAS NMR spectra of CuAlF<sub>4.5</sub>(OH)<sub>0.5</sub>(H<sub>2</sub>O)[HAmTAZ]<sub>2</sub> recorded at various MAS frequencies. The dash lines are a guide for the eye. Temperature of the sample at these MAS frequencies was calibrated using the 207Pb chemical shift in solid lead nitrate.

-

| Line           | Intensity | $\delta_{iso}$  | $\delta_{CS}$ | $\eta_{CS}$ |  |  |
|----------------|-----------|-----------------|---------------|-------------|--|--|
|                | (± 0.5)   | (± 0.5)         | (± 1)         | (± 0.1)     |  |  |
| <sup>1</sup> H |           |                 |               |             |  |  |
| 1              | 42.1      | 1.9             | 100           | 0.0         |  |  |
| 2              | 39.3      | 12.5            | 95            | 0.8         |  |  |
| 3              | 18.6      | 45.5            | 107           | 0.5         |  |  |
|                |           | <sup>19</sup> F |               |             |  |  |
| 1              | 31.7      | -456.4          |               |             |  |  |
| 2              | 11.9      | -154.2          | 95            | 0.7         |  |  |
| 3              | 18.1      | -140.3          | 107           | 0.4         |  |  |
| 4              | 15.8      | -127.4          | 105           | 0.7         |  |  |
| 5              | 9.0       | -118.8          | 93            | 0.9         |  |  |
| 6              | 13.5      | -113.4          | 93            | 0.9         |  |  |

**Table S2.** <sup>1</sup>H and <sup>19</sup>F line label, line intensity (%), isotropic chemical shift  $\delta_{iso}$  (ppm), chemical shift anisotropy  $\delta_{CS}$  (ppm) and asymmetry parameter  $\eta_{CS}$  in CuAlF<sub>5</sub>(H<sub>2</sub>O)[*Am*TAZ]<sub>2</sub>.