Size-controlled indium(III)-benzendicarboxylate hexagonal rods and their transformation to In_2O_3 hollow structures

Li-Na Jin, Qing Liu and Wei-Yin Sun*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China. E-mail: sunwy@nju.edu.cn; Fax: +86 25 83314502; Tel: +86 25 83593485

Fig. S1 SEM image of the as-prepared In-BDC complexes prepared in the presence of 0.0125 M of $In(NO_3)_3$ ·6H₂O and 0.0125 M of H₂BDC.

Fig. S2 EDS of the as-prepared In-BDC complexes: (a) hexagonal rods, (b) hexagonal lumps and (c) hexagonal disks.

Fig. S3 FT-IR spectra of the as-prepared In-BDC complexes: (a) hexagonal rods, (b) hexagonal lumps and (c) hexagonal disks.

Fig. S4 EDS spectra of as-prepared In_2O_3 hollow structures: (a) hexagonal tubes, (b) hexagonal lumps, (c) hexagonal disks.

Fig. S5 SEM images of the as-prepared In_2O_3 products after annealing In-BDC complexes with different concentrations of NaOAc: (a) 0.2 M; (b) 0.5 M; (c) 1 M.