# [AEPH<sub>2</sub>][GeSb<sub>2</sub>S<sub>6</sub>]·CH<sub>3</sub>OH: a thiogermanate-thioantimonate featuring an infinite ribbon-like structure with an unusual {GeSb<sub>3</sub>S<sub>11</sub>} unit and exhibiting the ability of photocatalytic degradation of organic dye

Mei-Ling Feng, Chun-Li Hu, Kai-Yao Wang, Cheng-Feng Du and Xiao-Ying Huang\*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. Fax: (+86) 591-83793727 E-mail: xyhuang@fjirsm.ac.cn

### **Supporting Information**

#### 1. Synthesis

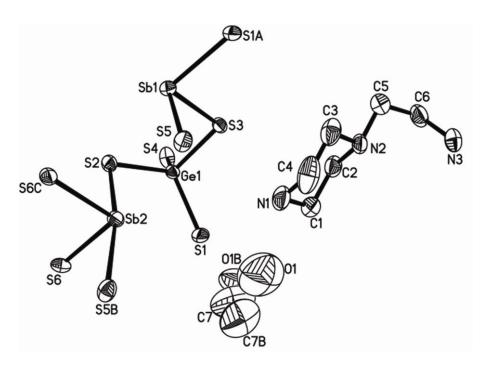
[AEPH<sub>2</sub>][GeSb<sub>2</sub>S<sub>6</sub>]·CH<sub>3</sub>OH (**1**) was prepared from a mixture of GeO<sub>2</sub> (0.052 g, 0.5 mmol), Sb<sub>2</sub>S<sub>3</sub> (0.165 g, 0.49 mmol), S (0.093 g, 2.90 mmol), 1 mL N-(2-aminoethyl)piperazine and 3 mL CH<sub>3</sub>OH, which was sealed in a stainless steel reactor with a 20 mL Teflon liner, heated at 160 °C for 7 days and then spontaneously cooled to room temperature. After the product was filtrated, the yellow clubbed crystals of **1** and a small number of indefinite yellow powder were obtained. The crystalline products of **1** were selected by hand, washed by ethanol, and air-dried (Yield: 0.201 g, 61% based on Sb). Anal. calc. for C<sub>7</sub>H<sub>21</sub>GeN<sub>3</sub>OS<sub>6</sub>Sb<sub>2</sub> **1**: C, 12.52%; H, 3.15%; N, 6.26%. Found: C, 12.45%; H, 3.21%; N, 6.64%.

#### 2. Crystal Structure

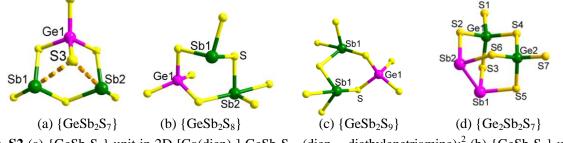
The intensity data of **1** was collected on a Xcalibur E Oxford diffractometer with graphite-monochromated Mo $K\alpha$  radiation ( $\Box \lambda \Box = 0.71073$  Å) at room temperature. The structure was solved by direct methods and refined by full-matrix least-squares on  $F^2$  using

the SHELX97 program package.<sup>1</sup> Non-hydrogen atoms were refined with anisotropic displacement parameters and the hydrogen atoms attached to the C, N and O atoms in compound **1** are located at geometrically calculated positions. The methanol molecule in compound **1** showed positional disorder and was split into two non-equivalent positions with refined SOFs of 0.652(14) and 0.348(14), respectively. The empirical formula was confirmed by the TGA and EA results. Selected bond lengths and angles of compound **1** are listed in Table S1. Selected hydrogen-bonding data of compound **1** are listed in Table S2.

|                   | 1          |                     | 1          |
|-------------------|------------|---------------------|------------|
| Sb(1)-S(5)        | 2.3690(14) | Sb(2)-S(6)#2        | 2.4409(14) |
| Sb(1)-S(1)#1      | 2.5207(14) | Sb(2)-S(6)          | 2.5002(13) |
| Sb(1)-S(3)        | 2.5279(14) | Sb(2)-S(2)          | 2.6034(14) |
| Ge(1)-S(4)        | 2.1503(16) | Sb(2)-S(5)#3        | 2.9308(16) |
| Ge(1)-S(2)        | 2.2211(15) | Sb(2)-S(5)          | 3.1810(15) |
| Ge(1)-S(1)        | 2.2234(14) |                     |            |
| Ge(1)-S(3)        | 2.2573(13) |                     |            |
| S(5)-Sb(1)-S(1)#1 | 93.46(5)   | S(6)#2-Sb(2)-S(6)   | 90.66(4)   |
| S(5)-Sb(1)-S(3)   | 95.68(5)   | S(6)#2-Sb(2)-S(2)   | 87.78(5)   |
| S(1)#1-Sb(1)-S(3) | 89.31(5)   | S(6)-Sb(2)-S(2)     | 84.74(4)   |
| S(4)-Ge(1)-S(2)   | 111.65(5)  | S(6)#2-Sb(2)-S(5)#3 | 85.48(5)   |
| S(4)-Ge(1)-S(1)   | 115.62(6)  | S(6)-Sb(2)-S(5)#3   | 89.61(4)   |
| S(2)-Ge(1)-S(1)   | 110.12(6)  | S(2)-Sb(2)-S(5)#3   | 171.16(4)  |
| S(4)-Ge(1)-S(3)   | 108.88(6)  | S(6)#2-Sb(2)-S(5)   | 85.06(4)   |
| S(2)-Ge(1)-S(3)   | 106.45(6)  | S(6)-Sb(2)-S(5)     | 170.75(4)  |
| S(1)-Ge(1)-S(3)   | 103.40(5)  | S(2)-Sb(2)-S(5)     | 86.89(4)   |
|                   |            | S(5)#3-Sb(2)-S(5)   | 98.21(4)   |


**Table S1.** Selected bond lengths (Å) and angles (°) for  $[AEPH_2][GeSb_2S_6] \cdot CH_3OH(1)$ .

Symmetric codes: #1 *x*+1, *y*, *z*; #2 *x*+1/2, *y*, -*z*+1/2; #3 *x*-1/2, *y*, -*z*+1/2.

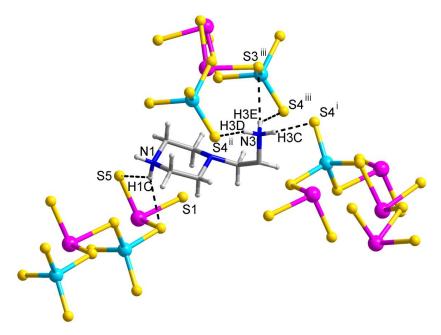

| D–H···A                       | D-H (Å) | H…A (Å) | D…A (Å)   | <(DHA) (°) |
|-------------------------------|---------|---------|-----------|------------|
| N(1)-H(1C)S(3)                | 0.90    | 2.69    | 3.521(5)  | 153.7      |
| N(1)-H(1C)S(5)                | 0.90    | 2.92    | 3.513(5)  | 124.6      |
| N(1)-H(1D)O(1)                | 0.90    | 1.86    | 2.729(12) | 160.4      |
| N(1)-H(1D)O(1B)               | 0.90    | 1.96    | 2.777(14) | 150.1      |
| $N(3)-H(3C)S(4)^{i}$          | 0.89    | 2.32    | 3.204(5)  | 171.3      |
| N(3)-H(3D)S(4) <sup>ii</sup>  | 0.89    | 2.52    | 3.345(5)  | 153.6      |
| N(3)-H(3E)S(3) <sup>iii</sup> | 0.89    | 2.71    | 3.339(5)  | 128.4      |
| $N(3)-H(3E)S(4)^{iii}$        | 0.89    | 2.78    | 3.547(5)  | 144.7      |

**Table S2.** Selected hydrogen bonds data for [AEPH<sub>2</sub>][GeSb<sub>2</sub>S<sub>6</sub>]·CH<sub>3</sub>OH (1).

Symmetry codes: i -*x*+1, -*y*, -*z*; ii -*x*+1/2, *y*-1/2, *z*; iii -*x*+3/2, *y*-1/2, *z*.



**Fig. S1** *ORTEP* plot showing the crystallographically asymmetric unit of **1** and the coordination geometries of metal ions; thermal ellipsoids are given at the 50% probability level. Symmetry codes for generated atoms: A) 1+x, y, z; B) x-1/2, y, 1/2-z; C) x+1/2, y, 1/2-z.




**Fig. S2** (a) {GeSb<sub>2</sub>S<sub>7</sub>} unit in 2D-[Co(dien)<sub>2</sub>]<sub>2</sub>GeSb<sub>4</sub>S<sub>10</sub> (dien = diethylenetriamine);<sup>2</sup> (b) {GeSb<sub>2</sub>S<sub>8</sub>} unit in 1D-[(Me)<sub>2</sub>NH<sub>2</sub>][DabcoH]<sub>2</sub>[Ge<sub>2</sub>Sb<sub>3</sub>S<sub>10</sub>] (Dabco = triethylenediamine), 2D-[M(en)<sub>3</sub>][GeSb<sub>2</sub>S<sub>6</sub>] (M = Mn,

Co, Ni, Ge; en = ethylenediamine);<sup>2-4</sup> (c) {GeSb<sub>2</sub>S<sub>9</sub>} unit in 3D-[(Me)<sub>2</sub>NH<sub>2</sub>]<sub>2</sub>GeSb<sub>2</sub>S<sub>6</sub>;<sup>5</sup> (d) {Ge<sub>2</sub>Sb<sub>2</sub>S<sub>7</sub>} unit in 0D-[Me<sub>2</sub>NH<sub>2</sub>]<sub>6</sub>[(Ge<sub>2</sub>Sb<sub>2</sub>S<sub>7</sub>)(Ge<sub>4</sub>S<sub>10</sub>)].<sup>3</sup>



(a)  $\{Ga_2Sb_2S_9\}$  (b)  $\{Sn_2Sb_2S_{10}\}$  (c)  $\{In_2Sb_2Q_{10}\}$  (Q = S, Se) **Fig. S3** (a) The tetranuclear heterometallic unit of  $\{Ga_2Sb_2S_9\}$  in  $[Ni(en)_3][Ga_2Sb_2S_7]$ ,  $[(Me)_2NH_2]_2[Ga_2Sb_2S_7]^6$  and  $[(Me)_2NH_2]_2[Ga_2Sb_2S_7] \cdot H_2O$ ;<sup>7</sup> (b) the tetranuclear heterometallic unit of  $\{Sn_2Sb_2S_{10}\}$  in  $[La(en)_4SbSnS_5]_2 \cdot 0.5H_2O$ ;<sup>8</sup> (c) the tetranuclear heterometallic unit of  $\{In_2Sb_2Q_{10}\}$  (Q = S, Se) in  $[(Me)_2NH_2]_2[In_2Sb_2S_{7\cdot x}Se_x]$  (x = 0, 2.20, 4.20, and 7).<sup>9</sup>



**Fig. S4** The doubly protonated N-(2-aminoethyl)piperazine cations form N–H···S hydrogen bonds with sulfur atoms from adjacent three double ribbons of  $[GeSb_2S_6]_n^{2n}$ . The N–H···S hydrogen bond distances and angles fall in the range of 3.204(5) to 3.547(5) Å and 124.6 to 171.3°, respectively. Symmetry codes: i -*x*+1, -*y*, -*z*; ii -*x*+1/2, *y*-1/2, *z*; iii -*x*+3/2, *y*-1/2, *z*.

#### **3.** Physical measurements

All chemicals employed in this study were analytical reagents and commercially available without further purification. Elemental analyses of C, H, N were performed on a German Elementary Vario EL III instrument. Powder X-ray diffraction (PXRD) patterns were recorded on a Rigaku MiniFlex II diffractometer using Cu $K\alpha$  radiation. Optical diffuse reflectance spectrum was measured at room temperature with a Perkin-Elmer Lambda 900

UV/Vis spectrophotometer in the range of 200-1100 nm. A BaSO<sub>4</sub> plate was used as a standard (100% reflectance). The absorption spectrum was calculated from reflectance spectra by using the Kubelka-Munk function:  $a/S = (1-R)^2/2R$ ,<sup>10</sup> where *a* is the absorption coefficient, *S* is the scattering coefficient which is practically independent of wavelength when the particle size is larger than 5 µm, and *R* is the reflectance. Thermogravimetric analysis was carried out with a NETZSCH STA 449F3 unit at a heating rate of 5 °C/min under a nitrogen atmosphere.

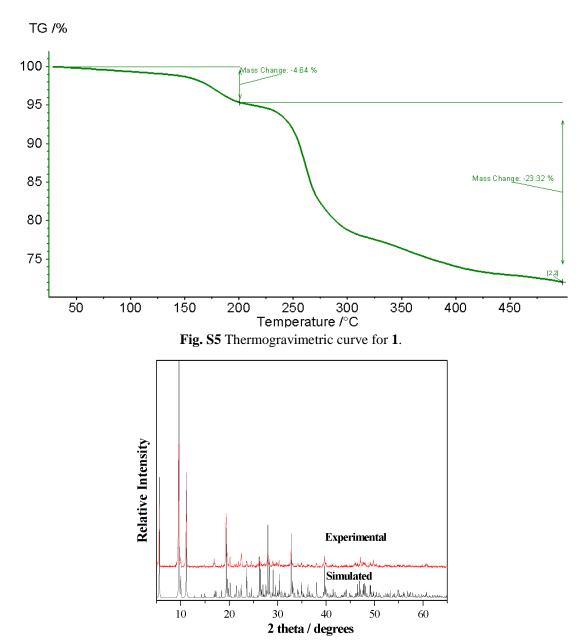



Fig. S6 The PXRD pattern of 1 (red) is in good agreement with that simulated from single crystal X-ray data of 1 (black).

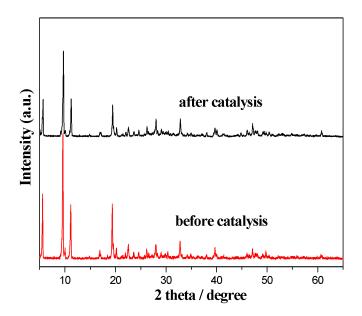



Fig. S7 The PXRD pattern of 1 after catalysis (black) is in good agreement that of 1 before catalysis (red).

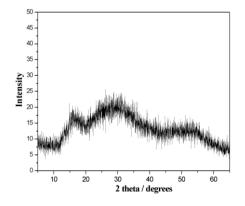



Fig. S8 The PXRD pattern of the TG residue of 1

## 4. Theoretical band structure

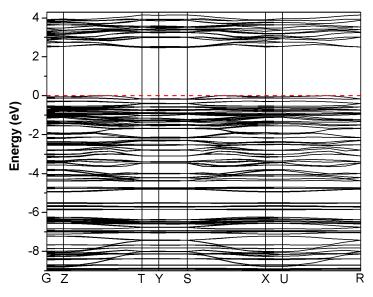



Fig. S9 The band structure of 1. Fermi level is set at 0 eV (red dot line).

| (II-VB) 01 <b>I</b> .    |         |          |  |  |  |  |
|--------------------------|---------|----------|--|--|--|--|
| k-point                  | L-CB    | H-VB     |  |  |  |  |
| G (0.000, 0.000, 0.000)  | 2.51161 | -0.04854 |  |  |  |  |
| Z (0.000, 0.000, 0.500)  | 2.53161 | -0.05957 |  |  |  |  |
| T (-0.500, 0.000, 0.500) | 2.4898  | -0.1639  |  |  |  |  |
| Y (-0.500, 0.000, 0.000) | 2.4747  | -0.15497 |  |  |  |  |
| S (-0.500, 0.500, 0.000) | 2.49107 | -0.1572  |  |  |  |  |
| X (0.000, 0.500, 0.000)  | 2.51578 | -0.04959 |  |  |  |  |
| U (0.000, 0.500, 0.500)  | 2.53639 | -0.05979 |  |  |  |  |
| R (-0.500, 0.500, 0.500) | 2.50493 | -0.16587 |  |  |  |  |

 Table S3. The state energies (eV) of the lowest conduction band (L-CB) and the highest valence band (H-VB) of 1.

#### **References:**

- 1. G. M. Sheldrick, SHELXS97 and SHELXL97, University of Göttingen, Germany, 1997.
- 2. J. Zhou, L. T. An, X. Liu, L. J. Huang and X. J. Huang, *Dalton Trans.*, 2011, 40, 11419-11424.
- 3. M. L. Feng, W. W. Xiong, D. Ye, J. R. Li and X. Y. Huang, Chem. Asian J., 2010, 5, 1817-1823.
- 4. A. V. Powell and R. Mackay, J. Solid State Chem., 2011, 184, 3144-3149.
- 5. M. L. Feng, D. N. Kong, Z. L. Xie and X. Y. Huang, Angew. Chem. Int. Ed., 2008, 47, 8623-8626.
- 6. N. Ding and M. G. Kanatzidis, Nat. Chem., 2010, 2, 187-191.
- 7. M. L. Feng, Z. L. Xie and X. Y. Huang, Inorg. Chem., 2009, 48, 3904-3906.
- 8. M. L. Feng, D. Ye and X. Y. Huang, Inorg. Chem., 2009, 48, 8060-8062.
- 9. K. Y. Wang, M. L. Feng, D. N. Kong, S. J. Liang, L. Wu and X. Y. Huang, *CrystEngComm*, 2012, 14, 90-94.
- 10. Wendlandt, W. M.; Hecht, H. G. Reflectance Spectroscopy, Interscience, New York, 1966.