'Masked synthons' in crystal engineering: insulated components in acetaminophen cocrystal hydrates

John R. G. Sander,^{*a*} Dejan-Krešimir Bučar,^{*a*} Rodger F. Henry,^{*b*} Brittany N. Giangiorgi,^{*a*} Geoff G. Z. Zhang^{**c*} and Leonard R. MacGillivray^{**a*}

^a Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA Fax: +1-319-335-1270; Tel: + 1-319-335-0563; E-mail: len-macgillivray@uiowa.edu

^b Structural Chemistry, Global Pharmaceutical R&D, Abbott Laboratories, Abbott Park, IL 60064, USA

^c Materials Science, Global Pharmaceutical R&D, Abbott Laboratories, Abbott Park, IL 60064, USA. Fax: +1-847-937-7756; Tel: +1-847-937-4702; E-mail: geoff.gz.zhang@abbott.com

Supplementary Information

Experimental

- 1. Crystallographic studies
- 2. Cambridge Structural Database analysis
- 3. References

1. Crystallographic studies

Single crystals of **1-4** were individually mounted on a glass fiber. Intensity data were collected on a Bruker APEX2 system. Data were collected at 100 K with graphite-monochromated MoK_a radiation ($\lambda = 0.71073$ Å). Data were collected in four sets using omega-phi scans with omega steps of 0.5° and phi steps of 90°. A total of 1464 frames were collected. Data were processed using SaintPlus.¹ Corrections for Lorentz-polarisation effects were applied. Absorption was negligible. All structures were solved using direct methods that yielded the non-hydrogen atoms. All hydrogen atoms were located in Fourier-difference electron density maps. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms associated with carbon atoms were refined in geometrically constrained riding positions. Hydrogen atoms associated with the use of SHELX-97.² Structure **1** contains a one half BPE molecule that lies on a center of inversion and is unequally disordered over two positions, yet, maintains the same hydrogen bonding interactions. The crystallographic data for **1-4** are summarised in Table 1.

	1	2	3	4
Chem. formula	$(C_8H_9O_2N)$	$(C_8H_9O_2N)$	$(C_8H_9O_2N)$	$(C_{12}H_{10}N_2)$
	$1.5(C_{12}H_{10}N_2)$	$1.5(C_{12}H_{10}N_2)$	$(C_{12}H_{10}N_2)$	$2(C_8H_9O_2N)$
	$4(H_2O)$	2(H ₂ O)	2(H ₂ O)	(C_2H_6O)
$M_{ m r}$	496.56	460.52	369.41	530.61
Crystal system	triclinic	triclinic	monoclinic	triclinic
a/Å	8.4243(14)	9.2028(9)	6.5584(5)	8.835(3)
$b/{ m \AA}$	12.227(2)	11.5290(12)	40.426(3)	10.724(3)
$c/{ m \AA}$	13.193(2)	11.7206(12)	7.1631(5)	15.174(4)
a/°	96.960(2)	93.3410(10)	90.00	91.638(4)
β/°	93.427(2)	99.5260(10)	97.5890(10)	100.515(4)
γ/°	101.280(2)	102.8040(10)	90.00	106.191(4)
$V/Å^3$	1318.0(4)	1190.1(2)	1882.5(2)	1352.6(7)
T/K	100(2)	100(2)	100(2)	100(2)
Space group	$P\overline{1}$	$P\overline{1}$	$P2_1/c$	$P\overline{1}$
Ζ	2	2	4	2
Radiation type	MoK _α	MoK _α	MoK _α	MoK _α
θ range	1.56 to 27.55	1.77 to 27.57	2.02 to 27.50	1.98 to 27.49
µ/mm⁻¹	0.090	0.088	0.092	0.090
$D_{\rm c}/{\rm gcm}^{-3}$	1.251	1.285	1.303	1.303
No. refl.	15528	13902	21710	15926
measured				
No. indep. refl.	5980	5375	4326	6122
R_{int}	0.0388	0.0154	0.0208	0.1800
$R_{I} (I > 2\sigma(I))$	0.0370	0.0358	0.0411	0.0625
$wR(F^2)$ ($I >$	0.1150	0.1322	0.1265	0.1653
$2\sigma(I)$				
R_1 (all data)	0.0443	0.0413	0.0470	0.0715
$wR(F^2)$ (all	0.1250	0.1398	0.1330	0.1757
data)				
GooF on F^2	0.878	1.181	0.878	1.053
CCDC number	889476	889477	889478	889479

 Table S1. Crystallographic parameters for structures 1-4.

Cocrystal	D-H···A	D-H	<i>d</i> (H··· <i>A</i>) / Å	<i>d</i> (D··· A) / Å	$\theta(D-H\cdots A) / \circ$
1	N1–H1…O3′	0.86	2.02	2.827 (7)	157
	N1-H1…O3	0.86	1.91	2.765 (6)	175
	01–H10…O5 ⁱⁱ	0.922 (18)	1.698 (18)	2.6195 (11)	177.8 (15)
	O5–H5OB…O2	0.88 (1)	1.83 (1)	2.7066 (12)	174 (1)
	O5–H5OA…O6	0.89(1)	1.84 (1)	2.7323 (12)	176 (2)
	O6-H6OA…N2	0.90 (1)	1.88 (1)	2.7737 (13)	173 (1)
	O4–H4OA…O6 ⁱⁱⁱ	0.89(1)	1.92 (1)	2.7947 (12)	168 (2)
	O4–H4OB…N3 ⁱ	0.88 (1)	1.86 (1)	2.7426 (13)	177 (2)
	O6–H6OB…O4 ^{iv}	0.89(1)	1.87 (1)	2.7495 (13)	168 (2)
	O3'-H3OC…O4	0.88 (1)	1.97 (3)	2.807 (5)	159 (7)
	O3'-H3OD…N4'	0.88 (1)	2.03 (4)	2.88 (2)	162 (11)
	O3'-H3OD…N4	0.88 (1)	2.00 (5)	2.837 (8)	158 (12)
	O3–H3OA…O4	0.88 (1)	1.90 (2)	2.750 (5)	161 (3)
	O3–H3OB…N4′	0.88 (1)	2.03 (3)	2.82 (2)	147 (3)
	O3–H3OB…N4	0.88 (1)	2.00 (2)	2.819 (8)	153 (3)
2	O1–H1O…O3 ^v	0.82	1.79	2.6030 (11)	171
	N1-H1…O4	0.86	1.97	2.8193 (11)	168
	O3–H3A…N4	0.87(1)	1.94 (1)	2.7969 (12)	168 (2)
	O3–H3B…O2	0.88 (1)	1.86 (1)	2.7216 (10)	167 (1)
	O4–H4A…N2	0.88 (1)	1.93 (1)	2.8022 (12)	169 (2)
	O4-H4B…O1 ^{vi}	0.88 (1)	2.00(1)	2.8854 (10)	178 (1)
3	O4–H4B…O3	0.97 (4)	1.85 (4)	2.8148 (15)	171 (3)
	O4–H4A…N3 ^{vii}	0.86 (2)	1.99 (2)	2.8395 (16)	172 (2)
	O3–H3B…O4 ^{viii}	1.00 (4)	1.83 (4)	2.8104 (15)	166 (4)
	O3–H3A···O2 ^{ix}	0.88 (2)	1.85 (2)	2.7261 (14)	176 (2)
	N1-H1…O3	0.86	2.02	2.8743 (14)	176
	O1-H1O…N2	0.93 (2)	1.78 (2)	2.7135 (15)	173 (2)
4	O5–H5O…O4	0.87 (3)	1.93 (3)	2.7841 (18)	167 (2)
	O3–H3O…N4 ^x	0.99 (3)	1.72 (3)	2.7040 (18)	172 (2)
	01–H1O…N3	0.96 (2)	1.82 (2)	2.7726 (18)	175 (2)
	N2–H2N…O2	0.86	2.05	2.8867 (17)	165
	N1–H1···O5 ^{xi}	0.86	2.06	2.9104 (18)	170

Table S2. Selected hydrogen-bond parameters for 1-4.

Symmetry codes : (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z; (iii) x, y-1, z; (iv) -x, -y+1, -z+1; (v) -x+2, -y+2, -z+3; (vi) -x+2, -y+1, -z+3; (vii) -x, y-1/2, -z+1/2; (viii) -x+2, -y, -z+1; (ix) x+1, y, z; (x) -x-1, -y+1, -z+1; (xi) x+1, y+1, z.

2. Cambridge Structural Database analysis

The survey of the CSD (version 5.32, update 5, November 2011) was performed with ConQuest30 (version 1.13) to investigate cocrystal hydrates. The structures were targeted to satisfy the following criteria: (a) crystallographic R factor < 0.10, (b) no ions, (c) 3D coordinates fully determined, (d) and purely organic components.³ A search for entries that contain the structure H-O-H retrieved molecular hydrates. The results were refined to those entries that contain 3, 4, 5, or 6 chemical units. The entries were individually examined for solids containing at least two components that are solids at ambient conditions. Within the remaining entries, a cocrystal was deemed to contain masked synthons when the components comprise functionalities capable of assembling into supramolecular synthons but lack direct hydrogen bonding. The hydrogen bonding interactions between components were limited to those interactions less than the sum of the van der Waals radii.⁴ For masked synthons comparable to 1-4, we excluded hostguest/clathrate systems and structures formed in the strict absence of crystal engineering precepts. Table S3 contains CSD reference codes and corresponding literature references for cocrystal hydrates that exhibit masked synthons. Table S4 contains CSD reference codes and corresponding literature references for cocrystals that exhibit complete synthon success in addition to cocrystal hydrates.

Entry	CSD Reference Code	Reference
1	MAHKEN	D. Braga, F. Grepioni, L. Maini, P. P. Mazzeo and K. Rubini, <i>Thermochim. Acta</i> , 2010 507 1
2	AJEZAR	A. Czapik and M. Gdaniec, <i>Acta Crystallogr., E: Struct. Rep. Online</i> , 2009, 65 , 03177
3	CUWKAG	M. Y. Antipin, A. I. Akhmedov, Y. T. Struchkov, E. I. Matrosov and M. I. Kabachnik <i>J. Struct. Chem.</i> 1983 24 888
4	EVAFIR	M F Wang Acta Crystallogr E: Struct Ren Online 2011 67 01581
5	FEZQOR	M. Ueda, T. Mochida, S. Furukawa, H. Suzuki, H. Moriyama and H. Mori, <i>Mol. Cryst. Lig. Cryst.</i> , 2002, 379 , 153.
6	HOMXUC	G. Buczak, Z. Dega-Szafran, A. Katrusiak and M. Szafran, <i>J. Mol. Struct.</i> , 1997, 437 , 143.
7	IBUXUZ	J. PrakashaReddy and V. R. Pedireddi, <i>Tetrahedron</i> , 2004, 60 , 8817.
8	IBUYEK	J. PrakashaReddy and V. R. Pedireddi, <i>Tetrahedron</i> , 2004, 60 , 8817.
9	NUDMII	G. Smith, D. E. Lynch, K. A. Byriel and C. H. L. Kennard, Z. Kristallogr., 1997, 212 , 130.
10	UFENAY	K. A. Al-Farhan, J. Saudi Chem. Soc., 2000, 4, 169.
11	WUVKII	M. L. Cheney, N. Shan, E. R. Healey, M. Hanna, L. Wojtas, M. J. Zaworotko, V. Sava, S. J. Song and J. R. Sanchez-Ramos, <i>Cryst. Growth Des.</i> , 2010, 10 , 394.
12	TIKPAF	M. Rafilovich, J. Bernstein, M. B. Hickey and M. Tauber, <i>Cryst. Growth Des.</i> , 2007, 7 , 1777.
13	AKAVIR	V. R. Pedireddi and J. PrakashaReddy, Tetrahedron Lett., 2003, 44, 6679.
14	HOPJUS	K. K. Arora, M. S. Talwelkar and V. R. Pedireddi, New J. Chem., 2009, 33, 57.
15	IPEWAC	A. Lemmerer, Acta Crystallogr., B: Struct. Sci., 2011, 67, 177.
16	ITOCAV	D. E. Turkington, A. J. Lough, G. Ferguson and C. Glidewell, <i>Acta Crystallogr.</i> , <i>B: Struct, Sci.</i> , 2004, 60 , 238.
17	KIZXEW	D. E. Lynch, G. Smith, K. A. Byriel and C. H. L. Kennard, <i>Aust. J. Chem.</i> , 1991, 44, 1017.
18	NEWXOC	B. M. Kariuki, K. D. M. Harris, D. Philp and J. M. A. Robinson, J. Am. Chem. Soc., 1997, 119 , 12679.
29	NUDMUU	G. Smith, D. E. Lynch, K. A. Byriel and C. H. L. Kennard, Z. Kristallogr., 1997, 212 130
20	OGAHIN	V. S. Senthil Kumar, A. Nangia, A. K. Katz and H. L. Carrell, <i>Cryst. Growth Des.</i> , 2002, 2 , 313.
21	QANMEY	T. R. Sarangarajan, K. Panchanatheswaran, J. N. Low and C. Glidewell, <i>Acta</i> Crystallogr. C: Cryst Struct Commun 2005 61 0118
22	UHAHUG	D Britton and M K Chantooni J Chem Crystallogr 2001 31 5
23	UHAIAO	D Britton and M K Chantooni J Chem Crystallogr 2001 31 5
24	YAXCEF01	M. K. Chantooni, D. Britton and I. M. Kolthoff, J. Cryst. Spectrosc., 1993, 23, 497.
25	ODEBUV	Z. L. Wang, M. X. Li, L. H. Wei and J. P. Wang, Acta Crystallogr., E: Struct. Rep. Online 2006 62 O2508
26	SETQUE	T. Lavy, N. Meirovich, H. A. Sparkes, J. A. K. Howard and M. Kaftory, <i>Acta</i> <i>Crystallogr. C: Cryst Struct Commun</i> 2007 63 O89
27	VEVLIS	G. Smith, U. D. Wermuth, P. C. Healy and D. J. Young, <i>J. Chem. Crystallogr.</i> , 2006 36 805
28	BUJWIN	H. Hadadzadeh, A. R. Rezvani, M. K. Abdolmaleki, K. Ghasemi, H. Esfandiari and M. Darvanavard, <i>I. Chem. Crystallogr.</i> 2010. 40 , 48
29	EBAWFK	B Zaman K A Udachin and I A Rinneester Crist Growth Dos 2004 4 585
30	EBAWAG	B. Zaman, K. A. Udachin and J. A. Ripmeester, <i>Cryst. Growth Des.</i> , 2004, 4, 585.

Table S3. CSD codes and citations to hydrated cocrystals with masked synthons.

Entry	CSD Reference Code	Reference
1	CUWJUZ	M. Y. Antipin, A. I. Akhmedov, Y. T. Struchkov, E. I. Matrosov and M. I.
		Kabachnik, J. Struct. Chem., 1983, 24, 888.
2	HOMXOW	G. Buczak, Z. Dega-Szafran, A. Katrusiak and M. Szafran, J. Mol. Struct., 1997,
		437 , 143.
3	MACCID	K. F. Bowes, G. Ferguson, A. J. Lough and C. Glidewell, Acta Crystallogr., B:
		Struct. Sci., 2003, 59 , 277.
4	ZOKYON	M. K. Chantooni and D. Britton, J. Chem. Crystallogr., 1995, 25, 351.
5	SETQOY	T. Lavy, N. Meirovich, H. A. Sparkes, J. A. K. Howard and M. Kaftory, Acta
		Crystallogr., C: Cryst. Struct. Commun., 2007, 63, O89.

Table S4. CSD ref codes and citations to cocrystals with synthon success and hydrates.

3. References

- 1. SaintPlus, (1997-2003) Bruker AXS Inc., Madision, WI, USA.
- 2. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- 3. L. Infantes, J. Chisholm and S. Motherwell, CrystEngComm, 2003, 5, 480.
- A. L. Gillon, N. Feeder, R. J. Davey and R. Storey, *Cryst. Growth Des.*, 2003, 3, 663.