## ELECTRONIC SUPPLEMENTARY INFORMATION

# Thermal stability and crystallochemical analysis for Co<sup>II</sup>based coordination polymers with TPP and TPPS porphyrins

Arkaitz Fidalgo-Marijuan,<sup>a</sup> Gotzone Barandika,<sup>\*<sup>b</sup></sup> Begoña Bazán,<sup>a</sup> Miren Karmele Urtiaga<sup>a</sup> and María Isabel Arriortua<sup>a</sup>

<sup>a</sup> Departamento de Mineralogía y Petrología, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain. Fax:+34 946 013 500; Tel: +34 946 015 984; E-mail: arkaitz.fidalgo@ehu.es, bego.bazan@ehu.es, karmele.urtiaga@ehu.es, maribel.arriortua@ehu.es

<sup>b</sup> Departamento de Química Inorgánica, Facultad de Farmacia, Universidad del País Vasco (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain. Fax: +34 945 013 014; Tel: +34 945 013 080; E-mail: gotzone.barandika@ehu.es



**Fig. S1** IR spectra for compound **1**. The following bands (cm<sup>-1</sup>) are marked: 3052 and 3028 (C(sp2)H),

1596-1441 (CC), 1349 (CN), 1210 and 1069 (bipy), 1000 (CoTPP) and 795-700 (CH).



**Fig. S2** IR spectra for compound **2**. The following bands (cm<sup>-1</sup>) are marked: 3397 (OH), 1624-1410 (CC), 1394 and 1174 (SO), 1349 (CN), 1208 and 1076 (bipy), 1000 (CoTPPS) and 863-744 (CH).



Fig. S3 Thermal ellipsoid plot (50% of probability) for compound 1.



Fig. S4 Thermal ellipsoid plot (50% of probability) for compound 2.



Fig. S5 Topology of the net for compound 1.



Fig. S6 \_Three gas generation manometry experiments (a) and Online-MS study (b) for compound 1.



Fig. S7 X-band EPR spectrum at 5° K for compound 1. Red line corresponds to the observed spectra and blue dashed line to the simulated one.



Fig. S8 X-band EPR spectrum at 5° K for compound 2. Red line corresponds to the observed spectra and

blue dashed line to the simulated one.



Fig. S9 Thermogravimetric analysis for compound 1. Green ranges show the weight loss intervals.



Fig. S10 Thermogravimetric analysis for compound 2. Green ranges show the weight loss intervals.



Fig. S11 Observed (red), calculated (black) and difference (blue) X-ray powder diffraction patterns for

CoTPP.

| Atoms        | X       | Y        | Z       | $U_{eq}$ , Å <sup>2</sup> |
|--------------|---------|----------|---------|---------------------------|
| C(1)         | 4305(1) | 4398(1)  | 1441(1) | 20(1)                     |
| C(2)         | 4327(1) | 4363(1)  | 840(1)  | 23(1)                     |
| C(3)         | 4826(1) | 4015(1)  | 735(1)  | 23(1)                     |
| C(4)         | 5119(1) | 3889(1)  | 1270(1) | 20(1)                     |
| C(5)         | 5667(1) | 3676(1)  | 1336(1) | 20(1)                     |
| C(6)         | 5965(1) | 3844(1)  | 1839(1) | 19(1)                     |
| C(7)         | 6539(1) | 3850(1)  | 1907(1) | 22(1)                     |
| C(8)         | 6674(1) | 4204(1)  | 2434(1) | 21(1)                     |
| C(9)         | 6183(1) | 4351(1)  | 2706(1) | 18(1)                     |
| C(10)        | 6157(1) | 4580(1)  | 3277(1) | 20(1)                     |
| C(11)        | 6656(1) | 4997(1)  | 3583(1) | 21(1)                     |
| C(12)        | 6966(1) | 4326(2)  | 3952(1) | 28(1)                     |
| C(13)        | 7440(1) | 4745(2)  | 4207(1) | 30(1)                     |
| C(14)        | 7610(1) | 5835(2)  | 4100(1) | 28(1)                     |
| C(15)        | 7303(1) | 6508(2)  | 3736(1) | 32(1)                     |
| C(16)        | 6829(1) | 6100(2)  | 3479(1) | 28(1)                     |
| C(17)        | 5945(1) | 3307(1)  | 832(1)  | 21(1)                     |
| C(18)        | 6325(1) | 3981(2)  | 593(1)  | 27(1)                     |
| C(19)        | 6579(1) | 3596(2)  | 127(1)  | 33(1)                     |
| C(20)        | 6455(1) | 2540(2)  | -101(1) | 33(1)                     |
| C(21)        | 6075(1) | 1864(2)  | 131(1)  | 31(1)                     |
| C(22)        | 5821(1) | 2247(2)  | 595(1)  | 26(1)                     |
| C(23)        | 5431(1) | 6731(1)  | 2382(1) | 21(1)                     |
| C(24)        | 5451(1) | 7913(1)  | 2378(1) | 21(1)                     |
| C(25)        | 5000    | 8530(2)  | 2500    | 19(1)                     |
| C(26)        | 5000    | -212(2)  | 2500    | 19(1)                     |
| C(27)        | 4539(1) | 405(1)   | 2349(1) | 21(1)                     |
| C(28)        | 4560(1) | 1587(1)  | 2351(1) | 21(1)                     |
| C(29)        | 7373(1) | 3488(1)  | 6166(1) | 20(1)                     |
| C(30)        | 6992(1) | 3545(1)  | 6587(1) | 22(1)                     |
| C(31)        | 6529(1) | 3085(1)  | 6368(1) | 22(1)                     |
| C(32)        | 6612(1) | 2729(1)  | 5808(1) | 20(1)                     |
| C(33)        | 6236(1) | 2182(1)  | 5453(1) | 21(1)                     |
| C(34)        | 6332(1) | 1755(1)  | 4923(1) | 21(1)                     |
| C(35)        | 5926(1) | 1236(1)  | 4549(1) | 24(1)                     |
| C(36)        | 6167(1) | 935(1)   | 4082(1) | 24(1)                     |
| C(37)        | 6721(1) | 1270(1)  | 4169(1) | 21(1)                     |
| C(38)        | 7097(1) | 1139(1)  | 3769(1) | 21(1)                     |
| C(39)        | 6941(1) | 597(1)   | 3217(1) | 20(1)                     |
| C(40)        | 6931(1) | -584(1)  | 3162(1) | 24(1)                     |
| C(41)        | 6848(1) | -1082(2) | 2639(1) | 25(1)                     |
| C(42)        | 6765(1) | -414(2)  | 2165(1) | 25(1)                     |
| C(43)        | 6755(1) | 760(2)   | 2218(1) | 26(1)                     |
| C(44)        | 6848(1) | 1261(1)  | 2742(1) | 24(1)                     |
| C(45)        | 5697(1) | 2003(1)  | 5672(1) | 21(1)                     |
| C(46)        | 5351(1) | 2914(2)  | 5746(1) | 24(1)                     |
| C(47)        | 4857(1) | 2731(2)  | 5964(1) | 28(1)                     |
| C(48)        | 4706(1) | 1646(2)  | 6111(1) | 27(1)                     |
| C(49)        | 5048(1) | 740(2)   | 6045(1) | 26(1)                     |
| C(50)        | 5541(1) | 916(1)   | 5825(1) | 24(1)                     |
| <u>Co(1)</u> | 5000    | 4129(1)  | 2500    | 16(1)                     |
| Co(2)        | 7500    | 2500     | 5000    | 17(1)                     |
| N(1)         | 4794(1) | 4125(1)  | 1695(1) | 18(1)                     |
| N(2)         | 5756(1) | 4126(1)  | 2338(1) | 18(1)                     |
| N(3)         | 5000    | 6130(2)  | 2500    | 19(1)                     |

**Table S1** Fractional atomic coordinates  $(x10^4)$  and equivalent thermal factors  $(x10^3)$  for compound **1**.

| N(4) | 5000    | 2181(2) | 2500    | 19(1) |
|------|---------|---------|---------|-------|
| N(5) | 6813(1) | 1771(1) | 4683(1) | 21(1) |
| N(6) | 7129(1) | 2993(1) | 5700(1) | 21(1) |

| Atoms                                   | U11                   | U22                   | U33                   | U23                 | U13                 | U12                 |
|-----------------------------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------|---------------------|
| C(1)                                    | 22(1)                 | 14(1)                 | 22(1)                 | 1(1)                | -1(1)               | 0(1)                |
| C(2)                                    | 24(1)                 | 23(1)                 | 23(1)                 | 1(1)                | -1(1)               | 1(1)                |
| C(3)                                    | 24(1)                 | 22(1)                 | 23(1)                 | -1(1)               | 2(1)                | 1(1)                |
| C(4)                                    | 22(1)                 | 16(1)                 | 21(1)                 | -1(1)               | 2(1)                | 0(1)                |
| C(5)                                    | 23(1)                 | 14(1)                 | 23(1)                 | 1(1)                | 3(1)                | -1(1)               |
| C(6)                                    | 20(1)                 | 13(1)                 | 24(1)                 | 1(1)                | 4(1)                | 0(1)                |
| C(7)                                    | 21(1)                 | 18(1)                 | 26(1)                 | 2(1)                | 3(1)                | 2(1)                |
| C(8)                                    | 20(1)                 | 17(1)                 | 27(1)                 | 3(1)                | 1(1)                | 0(1)                |
| C(9)                                    | 16(1)                 | 13(1)                 | 26(1)                 | 2(1)                | 0(1)                | -1(1)               |
| C(10)                                   | 21(1)                 | 14(1)                 | 25(1)                 | 1(1)                | 0(1)                | 1(1)                |
| C(11)                                   | 19(1)                 | 19(1)                 | 23(1)                 | -2(1)               | 1(1)                | 0(1)                |
| C(12)                                   | 29(1)                 | 21(1)                 | 32(1)                 | 0(1)                | -4(1)               | 1(1)                |
| C(13)                                   | 26(1)                 | 30(1)                 | 34(1)                 | -3(1)               | -8(1)               | 6(1)                |
| C(14)                                   | 20(1)                 | 30(1)                 | 34(1)                 | -9(1)               | -2(1)               | -2(1)               |
| C(15)                                   | 26(1)                 | 25(1)                 | 45(1)                 | 1(1)                | -1(1)               | -7(1)               |
| C(16)                                   | 24(1)                 | 23(1)                 | 36(1)                 | 6(1)                | -3(1)               | -3(1)               |
| C(17)                                   | 21(1)                 | 21(1)                 | 22(1)                 | 1(1)                | 1(1)                | 4(1)                |
| C(18)                                   | 29(1)                 | 25(1)                 | 29(1)                 | 3(1)                | 6(1)                | 1(1)                |
| C(19)                                   | 33(1)                 | 37(1)                 | 32(1)                 | 8(1)                | 11(1)               | 5(1)                |
| C(20)                                   | 36(1)                 | 42(1)                 | 23(1)                 | 1(1)                | 7(1)                | 14(1)               |
| C(21)                                   | 36(1)                 | 30(1)                 | 27(1)                 | -6(1)               | -1(1)               | 9(1)                |
| C(22)                                   | 26(1)                 | 24(1)                 | 26(1)                 | -1(1)               | 1(1)                | 2(1)                |
| C(23)                                   | 20(1)                 | 16(1)                 | 26(1)                 | 1(1)                | 4(1)                | 2(1)                |
| C(24)                                   | 21(1)                 | 16(1)                 | 26(1)                 | 1(1)                | 2(1)                | -2(1)               |
| C(25)                                   | 20(1)                 | 18(1)                 | 19(1)                 | 0                   | 0(1)                | 0                   |
| C(26)                                   | 22(1)                 | 16(1)                 | 19(1)                 | 0                   | 3(1)                | 0                   |
| C(27)                                   | 20(1)                 | 16(1)                 | 26(1)                 | -1(1)               | -1(1)               | -2(1)               |
| C(28)                                   | 21(1)                 | 15(1)                 | 28(1)                 | 0(1)                | 0(1)                | 1(1)                |
| C(29)                                   | 23(1)                 | 16(1)                 | 22(1)                 | 0(1)                | 1(1)                | 0(1)                |
| C(30)                                   | 24(1)                 | 18(1)                 | 24(1)                 | -2(1)               | 2(1)                | 1(1)                |
| <u>C(31)</u>                            | 23(1)                 | 19(1)                 | 23(1)                 | -1(1)               | 2(1)                | 0(1)                |
| <u>C(32)</u>                            | 22(1)                 | 15(1)                 | 23(1)                 | 0(1)                | 3(1)                | -1(1)               |
| <u>C(33)</u>                            | 23(1)                 | 16(1)                 | 24(1)                 | 2(1)                | 2(1)                | -1(1)               |
| <u>C(34)</u>                            | 22(1)                 | 17(1)                 | 23(1)                 | 2(1)                | 1(1)                | -2(1)               |
| <u>C(35)</u>                            | 22(1)                 | 24(1)                 | 26(1)                 | 0(1)                | 2(1)                | -2(1)               |
| $\frac{C(36)}{C(37)}$                   | 23(1)                 | 23(1)                 | 24(1)                 | -I(I)               | 0(1)                | -3(1)               |
| $\frac{C(37)}{C(39)}$                   | 23(1)                 | 16(1)                 | 23(1)                 | $\frac{I(1)}{O(1)}$ | 0(1)                | -2(1)               |
| $\frac{C(38)}{C(39)}$                   | 23(1)                 | 15(1)                 | 24(1)                 | 0(1)                | 1(1)                | 0(1)                |
| <u>C(39)</u>                            | 18(1)                 | 19(1)                 | 24(1)                 | -1(1)               | 2(1)                | -2(1)               |
| $\frac{C(40)}{C(41)}$                   | 25(1)                 | 19(1)                 | $\frac{2}{(1)}$       | 1(1)                | 2(1)                | -1(1)               |
| $\frac{C(41)}{C(42)}$                   | 25(1)                 | 19(1)                 | 32(1)                 | -5(1)               | 3(1)                | -2(1)               |
| $\frac{C(42)}{C(42)}$                   | 24(1)                 | 28(1)                 | 24(1)                 | -0(1)               | 3(1)                | -4(1)               |
| $\frac{\mathbf{U}(43)}{\mathbf{C}(44)}$ | 20(1)<br>25(1)        | $\frac{2}{(1)}$       | 24(1)<br>26(1)        | 1(1)                | 1(1)                | -2(1)               |
| $\frac{C(44)}{C(45)}$                   | 23(1)                 | 20(1)                 | $\frac{20(1)}{10(1)}$ | 0(1) 2(1)           | 0(1)                | -1(1)               |
| $\frac{\mathbf{U}(45)}{\mathbf{C}(46)}$ | 21(1)<br>24(1)        | 23(1)<br>24(1)        | 17(1)<br>26(1)        | -2(1)               | 0(1)                | -2(1)               |
| $\frac{\mathbf{C}(40)}{\mathbf{C}(47)}$ | $\frac{24(1)}{23(1)}$ | $\frac{24(1)}{31(1)}$ | 20(1)<br>20(1)        | $\frac{1(1)}{2(1)}$ | $\frac{U(1)}{1(1)}$ | -1(1)               |
| $\frac{\mathbf{C}(47)}{\mathbf{C}(48)}$ | 23(1)<br>21(1)        | 31(1)<br>36(1)        | 27(1)<br>25(1)        | -3(1)<br>3(1)       | $\frac{1(1)}{3(1)}$ | $\frac{4(1)}{6(1)}$ |
| $\frac{\mathbf{C}(40)}{\mathbf{C}(40)}$ | 21(1)<br>27(1)        | 26(1)                 | 23(1)<br>26(1)        | -3(1)               | 3(1)                | -0(1)               |
| $\frac{C(\mathbf{r})}{C(50)}$           | 27(1)<br>24(1)        | 20(1)                 | 26(1)                 | -3(1)               | 3(1)                | -3(1)               |
|                                         | <u>~ (1)</u>          |                       |                       | 5(1)                | 5(1)                | 5(1)                |

**Table S2** Anisotropic displacement parameters  $(A^2 \times 10^3)$  for compound **1**.

| <b>Co(1)</b> | 16(1) | 14(1) | 19(1) | 0     | 1(1) | 0     |
|--------------|-------|-------|-------|-------|------|-------|
| Co(2)        | 18(1) | 16(1) | 18(1) | -1(1) | 2(1) | -2(1) |
| N(1)         | 19(1) | 14(1) | 22(1) | 0(1)  | 1(1) | 0(1)  |
| N(2)         | 20(1) | 13(1) | 21(1) | 1(1)  | 2(1) | 0(1)  |
| N(3)         | 23(1) | 13(1) | 20(1) | 0     | 1(1) | 0     |
| N(4)         | 22(1) | 13(1) | 23(1) | 0     | 1(1) | 0     |
| N(5)         | 22(1) | 18(1) | 22(1) | 0(1)  | 2(1) | -1(1) |
| N(6)         | 21(1) | 20(1) | 23(1) | 0(1)  | 1(1) | -2(1) |

**Table S3** Fractional atomic coordinates  $(x10^4)$  and isotropic thermal factors  $(x10^3)$  of hydrogen atoms for

compound 1.

| Atoms | Х    | Y     | Z    | $U_{iso}, Å^2$ |
|-------|------|-------|------|----------------|
| H(2)  | 4047 | 4547  | 571  | 28             |
| H(3)  | 4957 | 3879  | 379  | 28             |
| H(7)  | 6779 | 3644  | 1633 | 26             |
| H(8)  | 7024 | 4331  | 2593 | 25             |
| H(12) | 6854 | 3576  | 4031 | 33             |
| H(13) | 7649 | 4276  | 4458 | 36             |
| H(14) | 7933 | 6116  | 4275 | 34             |
| H(15) | 7416 | 7259  | 3660 | 39             |
| H(16) | 6622 | 6575  | 3230 | 34             |
| H(18) | 6412 | 4704  | 748  | 33             |
| H(19) | 6837 | 4060  | -35  | 40             |
| H(20) | 6630 | 2279  | -416 | 40             |
| H(21) | 5989 | 1142  | -26  | 37             |
| H(22) | 5560 | 1783  | 752  | 31             |
| H(23) | 5743 | 6327  | 2296 | 25             |
| H(24) | 5769 | 8294  | 2293 | 25             |
| H(27) | 4214 | 24    | 2247 | 25             |
| H(28) | 4245 | 1994  | 2239 | 25             |
| H(30) | 7052 | 3849  | 6953 | 26             |
| H(31) | 6207 | 3012  | 6553 | 26             |
| H(35) | 5562 | 1127  | 4619 | 29             |
| H(36) | 6005 | 575   | 3760 | 28             |
| H(40) | 6981 | -1049 | 3485 | 28             |
| H(41) | 6849 | -1886 | 2606 | 30             |
| H(42) | 6714 | -757  | 1807 | 31             |
| H(43) | 6685 | 1222  | 1897 | 31             |
| H(44) | 6847 | 2064  | 2774 | 28             |
| H(46) | 5454 | 3660  | 5648 | 29             |
| H(47) | 4624 | 3352  | 6012 | 33             |
| H(48) | 4368 | 1523  | 6258 | 33             |
| H(49) | 4945 | -3    | 6149 | 32             |
| H(50) | 5774 | 292   | 5780 | 28             |
| H(1N) | 7279 | 2860  | 5401 | 32             |

**Table S4** Fractional atomic coordinates  $(x10^4)$  and equivalent thermal factors  $(x10^3)$  for compound **2**.

| Atoms | Х        | Y       | Z       | Ueq, Å2 |
|-------|----------|---------|---------|---------|
| C(1)  | 8891(2)  | 1260(2) | 1328(2) | 31(1)   |
| C(2)  | 8833(2)  | 471(2)  | 1244(2) | 36(1)   |
| C(3)  | 9508(2)  | 219(2)  | 1082(2) | 37(1)   |
| C(4)  | 10003(2) | 844(2)  | 1086(1) | 31(1)   |
| C(5)  | 8297(2)  | 1728(2) | 1461(1) | 32(1)   |

| <b>C(6)</b>  | 7579(2)  | 1366(2)  | 1603(2)  | 34(1)  |
|--------------|----------|----------|----------|--------|
| C(7)         | 7019(2)  | 1305(2)  | 1178(2)  | 38(1)  |
| C(8)         | 6406(2)  | 863(3)   | 1278(2)  | 41(1)  |
| C(9)         | 6343(2)  | 492(2)   | 1815(2)  | 37(1)  |
| C(10)        | 6863(2)  | 601(3)   | 2267(2)  | 45(1)  |
| C(11)        | 7480(2)  | 1034(3)  | 2154(2)  | 43(1)  |
| C(12)        | 10637(2) | 2513(2)  | 56(2)    | 34(1)  |
| C(13)        | 10655(2) | 2486(2)  | -560(2)  | 36(1)  |
| C(14)        | 10000    | 2500     | -886(2)  | 32(1)  |
| C(15)        | 10000    | 2500     | -1548(2) | 32(1)  |
| C(16)        | 9446(2)  | 2860(3)  | -1869(2) | 42(1)  |
| C(17)        | 9469(2)  | 2846(2)  | -2483(2) | 41(1)  |
| Co(1)        | 10000    | 2500     | 1250     | 24(1)  |
| Co(2)        | 10000    | 2500     | -3750    | 28(1)  |
| N(1)         | 9612(2)  | 1480(2)  | 1222(1)  | 28(1)  |
| N(2)         | 10000    | 2500     | 366(2)   | 27(1)  |
| N(3)         | 10000    | 2500     | -2794(2) | 32(1)  |
| S(1)         | 5616(1)  | -156(1)  | 1947(1)  | 40(1)  |
| <b>O</b> (1) | 5997(2)  | -842(2)  | 2111(1)  | 44(1)  |
| <b>O(2)</b>  | 5156(2)  | 120(2)   | 2432(2)  | 51(1)  |
| <b>O(3</b> ) | 5218(2)  | -212(2)  | 1381(2)  | 57(1)  |
| O(4)         | 9417(2)  | 3507(2)  | -3762(1) | 34(1)  |
| <b>O(6</b> ) | 3638(5)  | 9557(6)  | 2426(5)  | 77(3)  |
| <b>O(8</b> ) | 3705(5)  | 10413(6) | 1359(6)  | 85(3)  |
| O(5)         | 5000     | 10000    | 0        | 122(4) |
| O(7)         | 3565(5)  | 10001(7) | 1957(6)  | 102(4) |
| O(9)         | 3637(5)  | 10076(5) | 628(5)   | 84(3)  |
| O(10)        | 3541(5)  | 10118(5) | 126(5)   | 87(3)  |

**Table S5** Anisotropic displacement parameters  $(A^2 \times 10^3)$  for compound **2**.

| Atoms        | U11   | U22   | U33   | U23   | U13   | U12    |
|--------------|-------|-------|-------|-------|-------|--------|
| C(1)         | 37(2) | 35(2) | 21(1) | 0(1)  | -1(1) | -3(1)  |
| C(2)         | 39(2) | 37(2) | 33(2) | -2(1) | -2(1) | -6(2)  |
| C(3)         | 42(2) | 35(2) | 34(2) | -5(2) | -6(2) | 0(2)   |
| C(4)         | 41(2) | 34(2) | 16(1) | -3(1) | -2(1) | 0(2)   |
| C(5)         | 36(2) | 41(2) | 19(2) | -3(1) | 1(1)  | -3(2)  |
| C(6)         | 34(2) | 40(2) | 27(2) | -3(1) | 4(1)  | -2(2)  |
| C(7)         | 40(2) | 46(2) | 29(2) | -1(2) | 4(1)  | 1(2)   |
| <b>C(8)</b>  | 36(2) | 49(2) | 37(2) | -6(2) | 1(1)  | -2(2)  |
| <b>C(9</b> ) | 34(2) | 38(2) | 39(2) | -3(2) | 7(2)  | -5(2)  |
| C(10)        | 47(2) | 59(3) | 30(2) | 7(2)  | 1(2)  | -14(2) |
| C(11)        | 44(2) | 54(2) | 31(2) | 0(2)  | -1(2) | -11(2) |
| C(12)        | 30(2) | 52(2) | 21(2) | 3(1)  | 1(1)  | 1(2)   |
| C(13)        | 32(2) | 56(2) | 20(2) | 4(1)  | 1(1)  | -1(2)  |
| C(14)        | 35(2) | 42(3) | 18(2) | 0     | 0     | -1(2)  |
| C(15)        | 33(2) | 45(3) | 18(2) | 0     | 0     | -4(2)  |
| C(16)        | 40(2) | 65(3) | 22(2) | -3(2) | 0(2)  | 10(2)  |
| C(17)        | 43(2) | 60(2) | 21(2) | 2(2)  | 0(2)  | 10(2)  |
| Co(1)        | 30(1) | 30(1) | 12(1) | 0     | 0     | 0      |
| Co(2)        | 35(1) | 35(1) | 15(1) | 0     | 0     | 0      |
| N(1)         | 33(1) | 33(2) | 16(1) | -3(1) | -1(1) | 0(1)   |
| N(2)         | 30(2) | 36(2) | 15(2) | 0     | 0     | -1(2)  |
| N(3)         | 35(2) | 43(2) | 18(2) | 0     | 0     | 0(2)   |
| <b>S</b> (1) | 40(1) | 35(1) | 45(1) | -1(1) | 1(1)  | -6(1)  |
| <b>O</b> (1) | 50(2) | 38(2) | 43(2) | -7(1) | 0(1)  | -3(1)  |
| <b>O</b> (2) | 46(2) | 41(2) | 66(2) | -3(1) | 11(1) | -3(1)  |

| <b>O(3</b> ) | 57(2)  | 50(2)  | 65(2)   | 9(2)   | -16(2) | -17(2) |
|--------------|--------|--------|---------|--------|--------|--------|
| <b>O(4</b> ) | 39(1)  | 35(1)  | 29(1)   | -2(1)  | -7(1)  | 0(1)   |
| <b>O(6)</b>  | 44(4)  | 97(7)  | 89(7)   | -6(5)  | 6(4)   | -14(4) |
| <b>O(8)</b>  | 57(5)  | 65(6)  | 132(10) | 8(6)   | -15(5) | 7(4)   |
| O(5)         | 110(7) | 75(5)  | 181(10) | -9(6)  | 56(7)  | -12(5) |
| <b>O</b> (7) | 61(5)  | 120(9) | 125(9)  | -44(8) | -15(5) | 22(5)  |
| <b>O</b> (9) | 79(6)  | 68(5)  | 105(7)  | 2(5)   | -19(5) | 1(4)   |
| O(10)        | 73(5)  | 78(6)  | 110(8)  | -13(5) | -10(5) | -9(4)  |

**Table S6** Fractional atomic coordinates  $(x10^4)$  and isotropic thermal factors  $(x10^3)$  of hydrogen atoms for

compound 2.

| Atoms | Χ       | Y       | Z        | $U_{iso}$ , Å <sup>2</sup> |
|-------|---------|---------|----------|----------------------------|
| H(2)  | 8397    | 179     | 1293     | 44                         |
| H(3)  | 9633    | -279    | 984      | 44                         |
| H(7)  | 7059    | 1573    | 812      | 46                         |
| H(8)  | 6032    | 814     | 980      | 49                         |
| H(10) | 6793    | 380     | 2649     | 54                         |
| H(11) | 7841    | 1105    | 2460     | 52                         |
| H(12) | 11093   | 2542    | 269      | 41                         |
| H(13) | 11120   | 2457    | -763     | 43                         |
| H(16) | 9057    | 3114    | -1667    | 51                         |
| H(17) | 9088    | 3096    | -2698    | 50                         |
| H(20) | 9660(2) | 3885(2) | -3758(2) | 34(1)                      |
| H(21) | 9100(2) | 3510(3) | -4022(2) | 65(2)                      |

**Table S7**  $\pi$ - $\pi$  interactions parameters for compound **1**.

| Face-to-face |           |                          |                            |
|--------------|-----------|--------------------------|----------------------------|
| $Cg^{I}$     | $Cg^{II}$ | $Cg^{I}$ - $Cg^{II}$ (Å) | $Cg^{I}\cdots Cg^{II}$ (°) |
| Cg(7)        | Cg(17)    | 4.041(9)                 | 10.77                      |

| Edge-to-face |        |             |                     |
|--------------|--------|-------------|---------------------|
| X-H          | Cg     | H- $Cg$ (Å) | X- $H$ ··· $Cg$ (°) |
| C(12)-H(12)  | Cg(13) | 2.51        | 88.10               |
| C(13)-H(13)  | Cg(12) | 2.45        | 88.10               |
| C(18)-H(18)  | Cg(11) | 2.94        | 87.35               |
| C(19)-H(19)  | Cg(8)  | 2.90        | 89.16               |
| C(27)-H(27)  | Cg(16) | 2.68        | 73.96               |
| C(47)-H(47)  | Cg(1)  | 2.97        | 83.64               |

Table S8 Most significant bond angles (°) and distances (Å) for compound 1 and 2 (distances in bold).

Compound 1

Co(1). CoN<sub>6</sub> octahedra

| Co1 | N1       | N2       | N3       | N4       |
|-----|----------|----------|----------|----------|
| N4  | 89.84(4) | 89.89(4) | 180      | 2.296(2) |
| N3  | 90.16(4) | 90.11(4) | 2.357(2) |          |
| N2  | 90.21(6) | 1.962(1) |          |          |
| N1  | 1.966(1) |          |          |          |

Co(2). CoN<sub>4</sub> square planar

| Co2 | N5       | N6       |
|-----|----------|----------|
| N6  | 90.38(5) | 2.055(1) |
| N5  | 2.032(1) |          |

Compound 2

Co(1). CoN<sub>6</sub> octahedra

| Co1 | N1       | N2       |
|-----|----------|----------|
| N2  | 88.20(7) | 1.976(4) |
| N1  | 1.963(3) |          |

Co(2). CoN<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub> octahedra

| Co2 | 04       | N3       |
|-----|----------|----------|
| N3  | 90.76(6) | 2.137(4) |
| 04  | 2.092(3) |          |

 Table S9 Hydrogen bond parameters for compound 2.

| D-H           | Α           | D-H (Å)       | $H \cdots A$ (Å) | <i>O</i> - <i>H</i> …A (⁰) |
|---------------|-------------|---------------|------------------|----------------------------|
| O(4)-H(20)    | $0(3)^{i}$  | 0.81(3)       | 1.93(3)          | 173(4)                     |
| O(4)-H(21)    | $O(1)^{ii}$ | 0.82(4)       | 1.89(4)          | 178(4)                     |
| i) -1/2+x,1/2 | +y,1/2+z    | z; ii) -1/4-y | ,-1/4+x,3/4-     | Z                          |

Table S10 Bond distances (Å) and angles (°) for compound 1.

Distances

| C(1)-N(1)        | 1.375(2) | C(29)-N(6)         | 1.370(2) |
|------------------|----------|--------------------|----------|
| $C(1)-C(10)^{1}$ | 1.396(2) | $C(29)-C(38)^{1V}$ | 1.401(2) |
| C(1)-C(2)        | 1.446(2) | C(29)-C(30)        | 1.436(2) |
| C(2)-C(3)        | 1.357(2) | C(30)-C(31)        | 1.358(2) |
| C(2)-H(2)        | 0.9500   | C(30)-H(30)        | 0.9500   |
| C(3)-C(4)        | 1.445(2) | C(31)-C(32)        | 1.433(2) |
| C(3)-H(3)        | 0.9500   | C(31)-H(31)        | 0.9500   |
| C(4)-N(1)        | 1.374(2) | C(32)-N(6)         | 1.376(2) |
| C(4)-C(5)        | 1.400(2) | C(32)-C(33)        | 1.390(2) |
| C(5)-C(6)        | 1.395(2) | C(33)-C(34)        | 1.402(2) |
| C(5)-C(17)       | 1.496(2) | C(33)-C(45)        | 1.498(2) |
| C(6)-N(2)        | 1.376(2) | C(34)-N(5)         | 1.371(2) |
| C(6)-C(7)        | 1.441(2) | C(34)-C(35)        | 1.449(2) |
| C(7)-C(8)        | 1.353(2) | C(35)-C(36)        | 1.353(2) |
| C(7)-H(7)        | 0.9500   | C(35)-H(35)        | 0.9500   |
| C(8)-C(9)        | 1.442(2) | C(36)-C(37)        | 1.448(2) |
| C(8)-H(8)        | 0.9500   | C(36)-H(36)        | 0.9500   |
| C(9)-N(2)        | 1.372(2) | C(37)-N(5)         | 1.372(2) |
| C(9)-C(10)       | 1.401(2) | C(37)-C(38)        | 1.398(2) |
| C(J) - C(10)     | 1.401(2) | C(37) - C(30)      | 1.576(2) |

| $C(10)-C(1)^{1}$           | 1.396(2) | C(38)-C(29) <sup>1V</sup> | 1.401(2) |
|----------------------------|----------|---------------------------|----------|
| C(10)-C(11)                | 1.495(2) | C(38)-C(39)               | 1.498(2) |
| C(11)-C(12)                | 1.388(2) | C(39)-C(44)               | 1.390(2) |
| C(11)-C(16)                | 1.397(2) | C(39)-C(40)               | 1.397(2) |
| C(12)-C(13)                | 1.395(2) | C(40)-C(41)               | 1.388(2) |
| С(12)-Н(12)                | 0.9500   | C(40)-H(40)               | 0.9500   |
| C(13)-C(14)                | 1.381(3) | C(41)-C(42)               | 1.388(3) |
| С(13)-Н(13)                | 0.9500   | C(41)-H(41)               | 0.9500   |
| C(14)-C(15)                | 1.379(3) | C(42)-C(43)               | 1.390(2) |
| C(14)-H(14)                | 0.9500   | C(42)-H(42)               | 0.9500   |
| C(15)-C(16)                | 1.392(2) | C(43)-C(44)               | 1.393(2) |
| C(15)-H(15)                | 0.9500   | C(43)-H(43)               | 0.9500   |
| C(16)-H(16)                | 0.9500   | C(44)-H(44)               | 0.9500   |
| C(17)-C(18)                | 1.393(2) | C(45)-C(50)               | 1.394(2) |
| C(17)-C(22)                | 1.399(2) | C(45)-C(46)               | 1.399(2) |
| C(18)-C(19)                | 1.397(3) | C(46)-C(47)               | 1.393(2) |
| C(18)-H(18)                | 0.9500   | C(46)-H(46)               | 0.9500   |
| C(19)-C(20)                | 1.386(3) | C(47)-C(48)               | 1.385(3) |
| C(19)-H(19)                | 0.9500   | C(47)-H(47)               | 0.9500   |
| C(20)-C(21)                | 1.385(3) | C(48)-C(49)               | 1.385(3) |
| C(20)-H(20)                | 0.9500   | C(48)-H(48)               | 0.9500   |
| C(21)-C(22)                | 1.391(2) | C(49)-C(50)               | 1.392(2) |
| C(21)-H(21)                | 0.9500   | C(49)-H(49)               | 0.9500   |
| C(22)-H(22)                | 0.9500   | C(50)-H(50)               | 0.9500   |
| C(23)-N(3)                 | 1.340(2) | Co(1)-N(2)                | 1.962(1) |
| C(23)-C(24)                | 1.393(2) | $Co(1)-N(2)^{1}$          | 1.962(1) |
| C(23)-H(23)                | 0.9500   | $Co(1)-N(1)^{1}$          | 1.966(1) |
| C(24)-C(25)                | 1.394(2) | Co(1)-N(1)                | 1.966(1) |
| C(24)-H(24)                | 0.9500   | Co(1)-N(4)                | 2.296(2) |
| C(25)-C(24) <sup>1</sup>   | 1.394(2) | Co(1)-N(3)                | 2.357(2) |
| C(25)-C(26) <sup>11</sup>  | 1.482(3) | Co(2)-N(5)                | 2.032(1) |
| C(26)-C(27)                | 1.396(2) | Co(2)-N(5) <sup>1V</sup>  | 2.032(1) |
| C(26)-C(27) <sup>1</sup>   | 1.396(2) | Co(2)-N(6)                | 2.055(1) |
| C(26)-C(25) <sup>111</sup> | 1.482(3) | Co(2)-N(6) <sup>1V</sup>  | 2.055(1) |
| C(27)-C(28)                | 1.393(2) | Co(2)-H(1N)               | 1.22(3)  |
| C(27)-H(27)                | 0.9500   | N(3)-C(23) <sup>1</sup>   | 1.340(2) |
| C(28)-N(4)                 | 1.338(2) | N(4)-C(28) <sup>1</sup>   | 1.338(2) |
| C(28)-H(28)                | 0.9500   | N(6)-H(1N)                | 0.85(3)  |

#### Angles

| $N(1)-C(1)-C(10)^{1}$         | 124.7(1) | C(29) <sup>1V</sup> -C(38)-C(39) | 115.3(1) |
|-------------------------------|----------|----------------------------------|----------|
| N(1)-C(1)-C(2)                | 110.2(1) | C(44)-C(39)-C(40)                | 118.8(2) |
| $C(10)^{1}$ - $C(1)$ - $C(2)$ | 124.9(2) | C(44)-C(39)-C(38)                | 120.3(2) |
| C(3)-C(2)-C(1)                | 106.7(1) | C(40)-C(39)-C(38)                | 120.7(2) |

| C(3)-C(2)-H(2)                 | 126.7    | C(41)-C(40)-C(39)                   | 120.5(2)  |
|--------------------------------|----------|-------------------------------------|-----------|
| C(1)-C(2)-H(2)                 | 126.7    | C(41)-C(40)-H(40)                   | 119.8     |
| C(2)-C(3)-C(4)                 | 106.9(1) | C(39)-C(40)-H(40)                   | 119.8     |
| C(2)-C(3)-H(3)                 | 126.5    | C(42)-C(41)-C(40)                   | 120.4(2)  |
| C(4)-C(3)-H(3)                 | 126.5    | C(42)-C(41)-H(41)                   | 119.8     |
| N(1)-C(4)-C(5)                 | 125.4(1) | C(40)-C(41)-H(41)                   | 119.8     |
| N(1)-C(4)-C(3)                 | 110.1(1) | C(41)-C(42)-C(43)                   | 119.5(2)  |
| C(5)-C(4)-C(3)                 | 124.2(2) | C(41)-C(42)-H(42)                   | 120.3     |
| C(6)-C(5)-C(4)                 | 122.9(1) | C(43)-C(42)-H(42)                   | 120.3     |
| C(6)-C(5)-C(17)                | 119.2(1) | C(42)-C(43)-C(44)                   | 120.1(2)  |
| C(4)-C(5)-C(17)                | 117.8(1) | C(42)-C(43)-H(43)                   | 120.0     |
| N(2)-C(6)-C(5)                 | 124.9(1) | C(44)-C(43)-H(43)                   | 120.0     |
| N(2)-C(6)-C(7)                 | 109.6(1) | C(39)-C(44)-C(43)                   | 120.7(2)  |
| C(5)-C(6)-C(7)                 | 125.2(1) | C(39)-C(44)-H(44)                   | 119.6     |
| C(8)-C(7)-C(6)                 | 107.2(1) | C(43)-C(44)-H(44)                   | 119.6     |
| C(8)-C(7)-H(7)                 | 126.4    | C(50)-C(45)-C(46)                   | 118.9(2)  |
| C(6)-C(7)-H(7)                 | 126.4    | C(50)-C(45)-C(33)                   | 119.8(2)  |
| C(7)-C(8)-C(9)                 | 106.8(1) | C(46)-C(45)-C(33)                   | 121.3(2)  |
| C(7)-C(8)-H(8)                 | 126.6    | C(47)-C(46)-C(45)                   | 120.3(2)  |
| C(9)-C(8)-H(8)                 | 126.6    | C(47)-C(46)-H(46)                   | 119.9     |
| N(2)-C(9)-C(10)                | 125.8(1) | C(45)-C(46)-H(46)                   | 119.9     |
| N(2)-C(9)-C(8)                 | 109.9(1) | C(48)-C(47)-C(46)                   | 120.2(2)  |
| C(10)-C(9)-C(8)                | 123.9(1) | C(48)-C(47)-H(47)                   | 119.9     |
| $C(1)^{1}-C(10)-C(9)$          | 122.2(1) | C(46)-C(47)-H(47)                   | 119.9     |
| C(1) <sup>1</sup> -C(10)-C(11) | 120.7(1) | C(49)-C(48)-C(47)                   | 120.0(2)  |
| C(9)-C(10)-C(11)               | 117.1(1) | C(49)-C(48)-H(48)                   | 120.0     |
| C(12)-C(11)-C(16)              | 118.4(2) | C(47)-C(48)-H(48)                   | 120.0     |
| C(12)-C(11)-C(10)              | 123.1(2) | C(48)-C(49)-C(50)                   | 120.1(2)  |
| C(16)-C(11)-C(10)              | 118.6(1) | C(48)-C(49)-H(49)                   | 119.9     |
| C(11)-C(12)-C(13)              | 120.5(2) | C(50)-C(49)-H(49)                   | 119.9     |
| C(11)-C(12)-H(12)              | 119.7    | C(49)-C(50)-C(45)                   | 120.5(2)  |
| C(13)-C(12)-H(12)              | 119.7    | C(49)-C(50)-H(50)                   | 119.7     |
| C(14)-C(13)-C(12)              | 120.8(2) | C(45)-C(50)-H(50)                   | 119.7     |
| C(14)-C(13)-H(13)              | 119.6    | $N(2)-Co(1)-N(2)^{1}$               | 179.77(7) |
| C(12)-C(13)-H(13)              | 119.6    | $N(2)-Co(1)-N(1)^{1}$               | 89.79(6)  |
| C(15)-C(14)-C(13)              | 119.1(2) | $N(2)^{1}$ -Co(1)-N(1) <sup>1</sup> | 90.21(6)  |
| C(15)-C(14)-H(14)              | 120.5    | N(2)-Co(1)-N(1)                     | 90.21(6)  |
| C(13)-C(14)-H(14)              | 120.5    | $N(2)^{1}-Co(1)-N(1)$               | 89.79(6)  |
| C(14)-C(15)-C(16)              | 120.7(2) | $N(1)^{1}-Co(1)-N(1)$               | 179.68(8) |
| C(14)-C(15)-H(15)              | 119.7    | N(2)-Co(1)-N(4)                     | 89.89(4)  |
| C(16)-C(15)-H(15)              | 119.7    | $N(2)^{1}-Co(1)-N(4)$               | 89.89(4)  |
| C(15)-C(16)-C(11)              | 120.6(2) | $N(1)^{1}-Co(1)-N(4)$               | 89.84(4)  |
| C(15)-C(16)-H(16)              | 119.7    | N(1)-Co(1)-N(4)                     | 89.84(4)  |
| C(11)-C(16)-H(16)              | 119.7    | N(2)-Co(1)-N(3)                     | 90.11(4)  |

| C(18)-C(17)-C(22)                              | 118.8(2) | $N(2)^{1}-Co(1)-N(3)$                 | 90.11(4)  |
|------------------------------------------------|----------|---------------------------------------|-----------|
| C(18)-C(17)-C(5)                               | 122.2(2) | $N(1)^{1}-Co(1)-N(3)$                 | 90.16(4)  |
| C(22)-C(17)-C(5)                               | 119.0(2) | N(1)-Co(1)-N(3)                       | 90.16(4)  |
| C(17)-C(18)-C(19)                              | 120.3(2) | N(4)-Co(1)-N(3)                       | 180.0     |
| C(17)-C(18)-H(18)                              | 119.9    | N(5)-Co(2)-N(5) <sup>1V</sup>         | 180.00(4) |
| C(19)-C(18)-H(18)                              | 119.9    | N(5)-Co(2)-N(6)                       | 90.38(5)  |
| C(20)-C(19)-C(18)                              | 120.3(2) | N(5) <sup>1V</sup> -Co(2)-N(6)        | 89.62(5)  |
| C(20)-C(19)-H(19)                              | 119.9    | N(5)-Co(2)-N(6) <sup>1V</sup>         | 89.62(5)  |
| C(18)-C(19)-H(19)                              | 119.9    | $N(5)^{1V}$ -Co(2)-N(6) <sup>1V</sup> | 90.38(5)  |
| C(21)-C(20)-C(19)                              | 120.1(2) | N(6)-Co(2)-N(6) <sup>1V</sup>         | 179.9(1)  |
| C(21)-C(20)-H(20)                              | 120.0    | N(5)-Co(2)-H(1N)                      | 91.4(1)   |
| C(19)-C(20)-H(20)                              | 120.0    | N(5) <sup>1V</sup> -Co(2)-H(1N)       | 88.6(1)   |
| C(20)-C(21)-C(22)                              | 119.8(2) | N(6)-Co(2)-H(1N)                      | 4.1(1)    |
| C(20)-C(21)-H(21)                              | 120.1    | N(6) <sup>1V</sup> -Co(2)-H(1N)       | 176.0(1)  |
| C(22)-C(21)-H(21)                              | 120.1    | C(4)-N(1)-C(1)                        | 106.0(1)  |
| C(21)-C(22)-C(17)                              | 120.9(2) | C(4)-N(1)-Co(1)                       | 126.6(1)  |
| C(21)-C(22)-H(22)                              | 119.6    | C(1)-N(1)-Co(1)                       | 127.4(1)  |
| C(17)-C(22)-H(22)                              | 119.6    | C(9)-N(2)-C(6)                        | 106.2(1)  |
| N(3)-C(23)-C(24)                               | 124.0(2) | C(9)-N(2)-Co(1)                       | 126.8(1)  |
| N(3)-C(23)-H(23)                               | 118.0    | C(6)-N(2)-Co(1)                       | 126.9(1)  |
| C(24)-C(23)-H(23)                              | 118.0    | C(23)-N(3)-C(23) <sup>1</sup>         | 116.2(2)  |
| C(23)-C(24)-C(25)                              | 119.4(2) | $N(2)^{1}$ -Co(1)-N(1) <sup>1</sup>   | 90.21(6)  |
| C(23)-C(24)-H(24)                              | 120.3    | N(2)-Co(1)-N(1)                       | 90.21(6)  |
| C(25)-C(24)-H(24)                              | 120.3    | $N(2)^{1}$ -Co(1)-N(1)                | 89.79(6)  |
| C(24)-C(25)-C(24) <sup>1</sup>                 | 117.0(2) | $N(1)^{1}-Co(1)-N(1)$                 | 179.68(8) |
| C(24)-C(25)-C(26) <sup>11</sup>                | 121.5(1) | N(2)-Co(1)-N(4)                       | 89.89(4)  |
| C(24) <sup>1</sup> -C(25)-C(26) <sup>11</sup>  | 121.5(1) | $N(2)^{1}$ -Co(1)-N(4)                | 89.89(4)  |
| C(27)-C(26)-C(27) <sup>1</sup>                 | 117.2(2) | $N(1)^{1}$ -Co(1)-N(4)                | 89.84(4)  |
| C(27)-C(26)-C(25) <sup>111</sup>               | 121.4(1) | N(1)-Co(1)-N(4)                       | 89.84(4)  |
| C(27) <sup>1</sup> -C(26)-C(25) <sup>111</sup> | 121.4(1) | N(2)-Co(1)-N(3)                       | 90.11(4)  |
| C(28)-C(27)-C(26)                              | 119.3(2) | $N(2)^{1}-Co(1)-N(3)$                 | 90.11(4)  |
| C(28)-C(27)-H(27)                              | 120.4    | $N(1)^{1}-Co(1)-N(3)$                 | 90.16(4)  |
| C(26)-C(27)-H(27)                              | 120.4    | N(1)-Co(1)-N(3)                       | 90.16(4)  |
| N(4)-C(28)-C(27)                               | 123.6(1) | N(4)-Co(1)-N(3)                       | 180.0     |
| N(4)-C(28)-H(28)                               | 118.2    | N(5)-Co(2)-N(5) <sup>1V</sup>         | 180.00(4) |
| C(27)-C(28)-H(28)                              | 118.2    | N(5)-Co(2)-N(6)                       | 90.38(5)  |
| N(6)-C(29)-C(38) <sup>1V</sup>                 | 126.7(2) | N(5) <sup>1V</sup> -Co(2)-N(6)        | 89.62(5)  |
| N(6)-C(29)-C(30)                               | 108.1(1) | N(5)-Co(2)-N(6) <sup>1V</sup>         | 89.62(5)  |
| C(38) <sup>1</sup> v- $C(29)$ - $C(30)$        | 125.2(2) | $N(5)^{1V}$ -Co(2)-N(6) <sup>1V</sup> | 90.38(5)  |
| C(31)-C(30)-C(29)                              | 107.5(1) | N(6)-Co(2)-N(6) <sup>1V</sup>         | 179.9(1)  |
| C(31)-C(30)-H(30)                              | 126.2    | N(5)-Co(2)-H(1N)                      | 91.4(1)   |
| C(29)-C(30)-H(30)                              | 126.2    | N(5) <sup>1V</sup> -Co(2)-H(1N)       | 88.6(1)   |
| C(30)-C(31)-C(32)                              | 107.9(1) | N(6)-Co(2)-H(1N)                      | 4.1(1)    |
| C(30)-C(31)-H(31)                              | 126.0    | N(6) <sup>1V</sup> -Co(2)-H(1N)       | 175.9(1)  |

| C(32)-C(31)-H(31)               | 126.0    | C(4)-N(1)-C(1)                | 106.0(1)  |
|---------------------------------|----------|-------------------------------|-----------|
| N(6)-C(32)-C(33)                | 127.0(1) | C(4)-N(1)-Co(1)               | 126.6(1)  |
| N(6)-C(32)-C(31)                | 107.7(1) | C(1)-N(1)-Co(1)               | 127.4(1)  |
| C(33)-C(32)-C(31)               | 125.2(2) | C(9)-N(2)-C(6)                | 106.2(1)  |
| C(32)-C(33)-C(34)               | 124.9(2) | C(9)-N(2)-Co(1)               | 126.8(1)  |
| C(32)-C(33)-C(45)               | 116.5(1) | C(6)-N(2)-Co(1)               | 126.9(1)  |
| C(34)-C(33)-C(45)               | 118.5(1) | $C(23)-N(3)-C(23)^{1}$        | 116.2(2)  |
| N(5)-C(34)-C(33)                | 125.6(2) | C(23)-N(3)-Co(1)              | 121.91(9) |
| N(5)-C(34)-C(35)                | 110.5(1) | $C(23)^{1}-N(3)-Co(1)$        | 121.91(9) |
| C(33)-C(34)-C(35)               | 123.9(2) | C(28)-N(4)-C(28) <sup>1</sup> | 117.0(2)  |
| C(36)-C(35)-C(34)               | 106.7(1) | C(28)-N(4)-Co(1)              | 121.5(2)  |
| C(36)-C(35)-H(35)               | 126.6    | $C(28)^{1}-N(4)-Co(1)$        | 121.5(2)  |
| C(34)-C(35)-H(35)               | 126.6    | C(34)-N(5)-C(37)              | 105.5(1)  |
| C(35)-C(36)-C(37)               | 106.6(2) | C(34)-N(5)-Co(2)              | 126.8(1)  |
| C(35)-C(36)-H(36)               | 126.7    | C(37)-N(5)-Co(2)              | 127.5(1)  |
| C(37)-C(36)-H(36)               | 126.7    | C(29)-N(6)-C(32)              | 108.8(1)  |
| N(5)-C(37)-C(38)                | 125.5(2) | C(29)-N(6)-Co(2)              | 125.7(1)  |
| N(5)-C(37)-C(36)                | 110.7(1) | C(32)-N(6)-Co(2)              | 125.0(1)  |
| C(38)-C(37)-C(36)               | 123.8(2) | C(29)-N(6)-H(1N)              | 125(2)    |
| C(37)-C(38)-C(29) <sup>1V</sup> | 124.6(2) | C(32)-N(6)-H(1N)              | 127(2)    |
| C(37)-C(38)-C(39)               | 120.2(1) |                               |           |

Symmetry codes: i) -x+1,y,-z+1/2; ii) x,y+1,z; iii) x,y-1,z; iv) -x+3/2,-y+1/2,-z+1

### Table S11 Bond distances (Å) and angles (°) for compound 2.

| Distances               |          |                            |          |
|-------------------------|----------|----------------------------|----------|
| C(1)-N(1)               | 1.376(5) | C(14)-C(15)                | 1.481(8) |
| C(1)-C(5)               | 1.391(5) | C(15)-C(16) <sup>iii</sup> | 1.388(5) |
| C(1)-C(2)               | 1.436(5) | C(15)-C(16)                | 1.388(5) |
| C(2)-C(3)               | 1.344(6) | C(16)-C(17)                | 1.374(5) |
| C(2)-H(2)               | 0.9500   | C(16)-H(16)                | 0.9500   |
| C(3)-C(4)               | 1.433(5) | C(17)-N(3)                 | 1.335(5) |
| C(3)-H(3)               | 0.9500   | С(17)-Н(17)                | 0.9500   |
| C(4)-N(1)               | 1.377(5) | Co(1)-N(1) <sup>iii</sup>  | 1.963(3) |
| C(4)-C(5) <sup>i</sup>  | 1.388(5) | Co(1)-N(1)                 | 1.963(3) |
| C(5)-C(4) <sup>ii</sup> | 1.388(5) | Co(1)-N(1) <sup>i</sup>    | 1.963(3) |
| C(5)-C(6)               | 1.481(5) | Co(1)-N(1) <sup>ii</sup>   | 1.963(3) |
| C(6)-C(11)              | 1.381(5) | Co(1)-N(2) <sup>ii</sup>   | 1.976(4) |
| C(6)-C(7)               | 1.388(6) | Co(1)-N(2)                 | 1.976(4) |
| C(7)-C(8)               | 1.378(6) | Co(2)-O(4)                 | 2.092(3) |
| C(7)-H(7)               | 0.9500   | Co(2)-O(4) <sup>iii</sup>  | 2.092(3) |

| C(8)-C(9)                  | 1.377(6) | Co(2)-O(4) <sup>iv</sup>  | 2.092(3) |
|----------------------------|----------|---------------------------|----------|
| C(8)-H(8)                  | 0.9500   | $Co(2)-O(4)^{v}$          | 2.092(3) |
| C(9)-C(10)                 | 1.390(6) | Co(2)-N(3) <sup>iv</sup>  | 2.137(4) |
| C(9)-S(1)                  | 1.776(4) | Co(2)-N(3)                | 2.137(4) |
| C(10)-C(11)                | 1.378(6) | N(2)-C(12) <sup>iii</sup> | 1.339(4) |
| C(10)-H(10)                | 0.9500   | N(3)-C(17) <sup>iii</sup> | 1.335(5) |
| С(11)-Н(11)                | 0.9500   | S(1)-O(2)                 | 1.451(3) |
| C(12)-N(2)                 | 1.339(4) | S(1)-O(3)                 | 1.458(4) |
| C(12)-C(13)                | 1.379(5) | S(1)-O(1)                 | 1.457(3) |
| С(12)-Н(12)                | 0.9500   | O(4)-H(20)                | 0.81(1)  |
| C(13)-C(14)                | 1.384(4) | O(4)-H(21)                | 0.81(1)  |
| С(13)-Н(13)                | 0.9500   | O(9)-O(10)                | 1.14(1)  |
| C(14)-C(13) <sup>iii</sup> | 1.384(4) |                           |          |

#### Angles

| N(1)-C(1)-C(5)                | 125.9(3) | N(3)-C(17)-H(17)                              | 118.3     |
|-------------------------------|----------|-----------------------------------------------|-----------|
| N(1)-C(1)-C(2)                | 109.2(3) | С(16)-С(17)-Н(17)                             | 118.3     |
| C(5)-C(1)-C(2)                | 124.8(4) | N(1) <sup>iii</sup> -Co(1)-N(1)               | 176.4(1)  |
| C(3)-C(2)-C(1)                | 107.6(3) | $N(1)^{iii}$ -Co(1)-N(1) <sup>i</sup>         | 90.058(5) |
| C(3)-C(2)-H(2)                | 126.2    | N(1)-Co(1)-N(1) <sup>i</sup>                  | 90.057(5) |
| C(1)-C(2)-H(2)                | 126.2    | $N(1)^{iii}$ -Co(1)-N(1) <sup>ii</sup>        | 90.054(5) |
| C(2)-C(3)-C(4)                | 107.2(3) | N(1)-Co(1)-N(1) <sup>ii</sup>                 | 90.057(5) |
| C(2)-C(3)-H(3)                | 126.4    | $N(1)^{i}$ -Co(1)-N(1) <sup>ii</sup>          | 176.4(1)  |
| C(4)-C(3)-H(3)                | 126.4    | N(1)-Co(1)-N(2) <sup>ii</sup>                 | 91.80(7)  |
| N(1)-C(4)-C(5) <sup>i</sup>   | 125.1(3) | N(1) <sup>i</sup> -Co(1)-N(2) <sup>ii</sup>   | 88.20(7)  |
| N(1)-C(4)-C(3)                | 109.6(3) | N(1) <sup>ii</sup> -Co(1)-N(2) <sup>ii</sup>  | 88.20(7)  |
| $C(5)^{i}-C(4)-C(3)$          | 124.8(3) | N(1) <sup>iii</sup> -Co(1)-N(2)               | 88.20(7)  |
| C(4) <sup>ii</sup> -C(5)-C(1) | 122.6(3) | N(1)-Co(1)-N(2)                               | 88.20(7)  |
| C(4) <sup>ii</sup> -C(5)-C(6) | 120.4(3) | N(1) <sup>ii</sup> -Co(1)-N(2)                | 91.80(7)  |
| C(1)-C(5)-C(6)                | 116.7(3) | N(1) <sup>ii</sup> -Co(1)-N(2)                | 91.80(7)  |
| C(11)-C(6)-C(7)               | 119.0(4) | N(2) <sup>ii</sup> -Co(1)-N(2)                | 180.0     |
| C(11)-C(6)-C(5)               | 119.5(3) | O(4)-Co(2)-O(4) <sup>iii</sup>                | 178.5(1)  |
| C(7)-C(6)-C(5)                | 121.4(3) | O(4)-Co(2)-O(4) <sup>iv</sup>                 | 90.009(2) |
| C(8)-C(7)-C(6)                | 120.9(4) | O(4) <sup>iii</sup> -Co(2)-O(4) <sup>iv</sup> | 90.014(2) |
| C(8)-C(7)-H(7)                | 119.5    | O(4)-Co(2)-O(4) <sup>v</sup>                  | 90.010(2) |
| C(6)-C(7)-H(7)                | 119.5    | $O(4)^{iii}$ -Co(2)-O(4) <sup>v</sup>         | 90.008(2) |
| C(7)-C(8)-C(9)                | 119.1(4) | $O(4)^{iv}-Co(2)-O(4)^{v}$                    | 178.5(1)  |
| C(7)-C(8)-H(8)                | 120.5    | O(4)-Co(2)-N(3) <sup>iv</sup>                 | 89.24(6)  |
| C(9)-C(8)-H(8)                | 120.5    | O(4) <sup>iii</sup> -Co(2)-N(3) <sup>iv</sup> | 89.24(6)  |

| C(8)-C(9)-C(10)                   | 120.7(4) | $O(4)^{iv}-Co(2)-N(3)^{iv}$                 | 90.76(6) |
|-----------------------------------|----------|---------------------------------------------|----------|
| C(8)-C(9)-S(1)                    | 121.5(3) | O(4) <sup>v</sup> -Co(2)-N(3) <sup>iv</sup> | 90.76(6) |
| C(10)-C(9)-S(1)                   | 117.7(3) | O(4)-Co(2)-N(3)                             | 90.76(6) |
| C(11)-C(10)-C(9)                  | 119.2(4) | O(4) <sup>iii</sup> -Co(2)-N(3)             | 90.76(6) |
| C(11)-C(10)-H(10)                 | 120.4    | O(4) <sup>iv</sup> -Co(2)-N(3)              | 89.24(6) |
| C(9)-C(10)-H(10)                  | 120.4    | O(4) <sup>v</sup> -Co(2)-N(3)               | 89.24(6) |
| C(10)-C(11)-C(6)                  | 120.7(4) | N(3) <sup>iv</sup> -Co(2)-N(3)              | 180.0    |
| C(10)-C(11)-H(11)                 | 119.7    | C(1)-N(1)-C(4)                              | 106.3(3) |
| C(6)-C(11)-H(11)                  | 119.7    | C(1)-N(1)-Co(1)                             | 126.7(2) |
| N(2)-C(12)-C(13)                  | 122.4(3) | C(4)-N(1)-Co(1)                             | 127.0(2) |
| N(2)-C(12)-H(12)                  | 118.8    | C(12) <sup>iii</sup> -N(2)-C(12)            | 117.7(4) |
| С(13)-С(12)-Н(12)                 | 118.8    | C(12) <sup>iii</sup> -N(2)-Co(1)            | 121.2(2) |
| C(12)-C(13)-C(14)                 | 120.4(3) | C(12)-N(2)-Co(1)                            | 121.2(2) |
| C(12)-C(13)-H(13)                 | 119.8    | C(17) <sup>iii</sup> -N(3)-C(17)            | 117.3(5) |
| C(14)-C(13)-H(13)                 | 119.8    | C(17) <sup>iii</sup> -N(3)-Co(2)            | 121.4(2) |
| C(13)-C(14)-C(13) <sup>iii</sup>  | 116.5(5) | C(17)-N(3)-Co(2)                            | 121.4(2) |
| C(13)-C(14)-C(15)                 | 121.7(2) | O(2)-S(1)-O(3)                              | 113.0(2) |
| C(13) <sup>iii</sup> -C(14)-C(15) | 121.7(2) | O(2)-S(1)-O(1)                              | 111.7(2) |
| C(16) <sup>iii</sup> -C(15)-C(16) | 117.7(5) | O(3)-S(1)-O(1)                              | 113.0(2) |
| C(16) <sup>iii</sup> -C(15)-C(14) | 121.1(2) | O(2)-S(1)-C(9)                              | 108.6(2) |
| C(16)-C(15)-C(14)                 | 121.2(2) | O(3)-S(1)-C(9)                              | 105.2(2) |
| C(17)-C(16)-C(15)                 | 119.1(4) | O(1)-S(1)-C(9)                              | 104.6(2) |
| C(17)-C(16)-H(16)                 | 120.4    | Co(2)-O(4)-H(20)                            | 117(3)   |
| C(15)-C(16)-H(16)                 | 120.4    | Co(2)-O(4)-H(21)                            | 112(4)   |
| N(3)-C(17)-C(16)                  | 123.4(4) | H(20)-O(4)-H(21)                            | 112(3)   |

Symmetry codes: i) -y+5/4,x-3/4,-z+1/4; ii) y+3/4,-x+5/4,-z+1/4; iii) -x+2,-y+1/2,z+0; iv) y+3/4,-x+5/4,-z-3/4; v) -y+5/4,x-3/4,-z-3/4