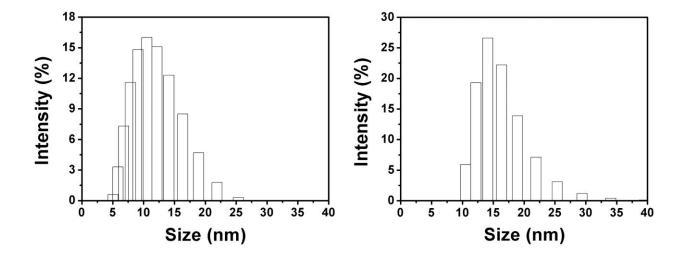
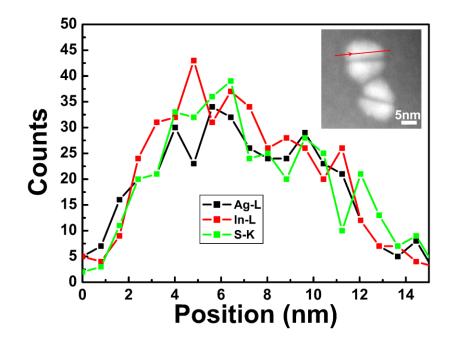
Electronic Supplementary Information


Controlled Synthesis of AgInS₂ Nanocrystals and Their Application in Organic-Inorganic Hybrid Photodetectors

Manjiao Deng,^{a,b,c} Shuling Shen,^{b,c} Xuewen Wang,^c Yejun Zhang,^{b,c} Huarui Xu,^{a*} Ting Zhang,^{c*} and Qiangbin Wang^{b,c*}


^aSchool of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China

^bDivision of Nanobiomedicine and ^ci-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China

Email: <u>qbwang2008@sinano.ac.cn</u>, <u>tzhang2010@sinano.ac.cn</u>, <u>huaruixu@guet.edu.cn</u>

Figure S1. DLS data of the single- (left) and dimer-AgInS₂ (right) NCs, which illustrate that the dimer structures are formed during the reaction, instead of the resultant from the TEM sampling.

Figure S2. Elemental profiles of Ag, In and S (see the red line in the inset HAADF-STEM image). The results illustrate the successful preparation of AgInS₂ NCs.

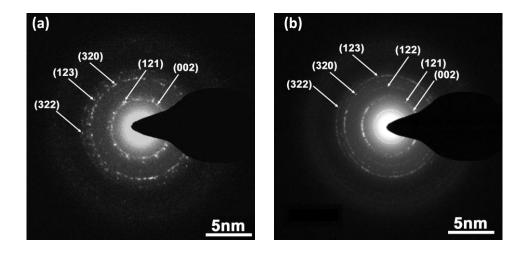


Figure S3. SAED patterns of (a) single-AgInS $_2$ and (b) dimer-AgInS $_2$