Synthesis, Structure and Adsorption of CoordinationPolymersConstructedfrom3,3',5,5'-Azobenzenetetracarboxylic Acid and Zn IonsFeifei Xing,^a Juan Jia,^a Licong Liu,^a Lina Zhong,^a Min Shao,^bYue-ling Bai,^a Yongmei Zhao,^a Shourong Zhu,*^a Xiang He,^a MingxingLi^a

^a Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China.

^b Instrumental Analysis and Research Center, Shanghai University, Shanghai, 200444, China.

Supporting Information

Fig. S1 Pore size distribution curve of complex 3.

Fig. S2 Photographs showing the visual color change of 2 exchanged with cations.

Fig. S3 IR spectra of 2 before and after metal ion exchanges.

Fig. S4 PXRD patterns of 2 before and after metal ion exchanges.

Fig. S5 Typical SEM image of Cu(II)-exchanged products from 2.

Fig. S6 EPR spectra of Cu(II)-exchanged products from 2

Fig. S7 Photographs showing the visual color change of I_2 enrichment progress.

Fig. S8 PXRD patterns of 3 before and after immersing in methylene blue.

Fig. S9 IR spectra of complexes 1-3.

Fig. S10 TGA and DSC curves of complex 1.

Fig. S11 TGA and DSC curves of complex 2.

Fig. S12 TGA and DSC curves of complex 3.

Fig. S13 Solid state fluorescence spectra of complexes 1-3 and free ligand.

 Table S1 Bond lengths [Å] and angles [°] for complex 1-3.

Table S2 Hydrogen bonds for complexes 1-3 [Å and °].

Table S3 N2 adsorption data of complex 3

Fig. S1. Pore size distribution curve of $\{(Hap)_2 [Zn_3(\eta_9-aobtc)_2] \cdot 2H_2O \}^3_n(3)$.

Fig. S2. Photographs showing the visual color change when some crystal of complex **2** was immersed in the solution of (a) 10 mg/ml Cu(NO₃)₂, (b) 10mg/ml Co(NO₃)₂, (c) 10mg/ml Ni(NO₃)₂.

Fig. S3. IR spectra of **2** before and after metal ion exchanges. (a) **2** before exchange; (b) Cu-exchanged; (c) Co –exchanged; (d) Ni -exchanged product.

Fig. S4. PXRD patterns of complex **2.** (a) Simulated; (b) Experimental; (c) Co –exchanged; (d) Ni -exchanged.

Fig. S5. Typical SEM image of Cu(II)-exchanged products from complex 2.

Fig. S6 EPR spectra of Cu(II)-exchanged products from complex 2.

Fig. S7. I_2 enrichment progress when 30 mg of crystals 2 were soaked in cyclohexane solution of I_2 (0.005 mol/L) (totle volume is 4 ml).

Fig. S8. PXRD patterns of complex **3.** (a) simulated; (b) experimental; (c) after immersing in methylene blue.

Fig. S9. IR spectra of complexes 1-3.

Fig. S10 TG and DSC of $\{[Zn_2(\eta_6-ao_2btc) (\eta_2-2,2'-bpy)_2(H_2O)_2] \cdot 2H_2O\}_n^1$ (1).

Fig. S11 TG and DSC of $\{[Zn_2(\eta_8\text{-aobtc})(\eta_2\text{-phen})(H_2O)] \bullet DMF \}^3_n$ (2).

Fig. S12 TG and DSC of $\{(Hap)_2 [Zn_3(\eta_9-aobtc)_2] \cdot 2H_2O \}^3_n(3)$.

Fig. S13 Fluorescence excitation of ligand H_4 abtc and complex 1- 3 in solid state (Em 387nm) (a). Fluorescence emissions of ligand H_4 abtc and complex 1- 3 in solid state (Ex 360nm) (b).

Complex 1			
Zn(1)-O(2)	2.035(6)	Zn(1)-N(1)	2.102(7)
Zn(1)-O(1W)	2.117(7)	Zn(1)-N(2)	2.137(8)
Zn(1)-O(3)#1	2.232(10)	Zn(1)-O(4)#1	2.317(11)
O(3)-Zn(1)#2	2.253(7)	O(4)-Zn(1)#2	2.317(8)
O(2)-Zn(1)-O(1W)	88.93(39)	N(1)-Zn(1)-O(1W)	93.53(3)
O(2)-Zn(1)-N(2)	92.1(3)	N(1)-Zn(1)-N(2)	76.8(3)
O(1W)-Zn(1)-N(2)	168.3(3)	O(2)-Zn(1)-O(3)#1	143.4(4)
N(1)-Zn(1)-O(3)#1	87.6(4)	O(1W)-Zn(1)-O(3)#1	89.3(3)
N(2)-Zn(1)-O(3)#1	96.8(3)	O(2)-Zn(1)-O(4)#1	87.8(3)
N(1)-Zn(1)-O(4)#1	142.0(3)	O(1W)-Zn(1)-O(4)#1	97.0(3)
N(2)-Zn(1)-O(4)#1	94.7(3)	O(3)#1-Zn(1)-O(4)#1	56.2(4)
Symmetry transformation	s used to generate equiv	valent atoms: #1 x,y,z+1; #	2 -x,-y,-z; #3 x,y,z-1.
	Comp	plex 2	
Zn(1)-O(7) #1	2.061(10)	Zn(1)-O(1W)	2.084(12)
Zn(1)-O(6) #2	2.083(11)	Zn(1)-N(1)	2.138(14)
Zn(1)-N(2)	2.147(13)	Zn(1)-O(1)	2.259(10)
Zn(2)-O(5) #3	1.967(9)	Zn(2)-O(8) #4	2.000(10)
Zn(2)-O(4)	2.036(15)	Zn(2)-O(1) #5	2.067(9)
Zn(2)-O(3)	2.437(13)	Zn(2)-O(2)#5	2.472(13)
O(7)#1-Zn(1)-O(6)#2	100.6(4)	O(7)#1-Zn(1)-O(1W)	96.8(5)
O(6)#2-Zn(1)-O(1W)	85.7(5)	O(7)#1-Zn(1)-N(1)	91.7(5)
O(6)#2-Zn(1)-N(1)	167.5(5)	O(1W)-Zn(1)-N(1)	91.1(5)
O(7)#1-Zn(1)-N(2)	167.5(5)	O(6)#2-Zn(1)-N(2)	90.0(5)
N(1)-Zn(1)-N(2)	78.0(6)	O(7)#1-Zn(1)-O(1)	85.4(4)
O(6)#2-Zn(1)-O(1)	90.8(4)	O(1W)-Zn(1)-O(1)	176.2(5)
N(1)-Zn(1)-O(1)	92.0(4)	N(2)-Zn(1)-O(1)	87.9(4)
O(5)#3-Zn(2)-O(8)#4	99.2(4)	O(5)#3-Zn(2)-O(4)	103.1(5)
O(8)#4-Zn(2)-O(4)	105.7(5)	O(5)#3-Zn(2)-O(1)#5	114.7(4)
O(8)#4-Zn(2)-O(1)#5	97.7(4)	O(4)-Zn(2)-O(1)#5	131.3(5)
O(5)#3-Zn(2)-O(3)	156.8(5)	O(8)#4-Zn(2)-O(3)	94.7(5)
O(4)-Zn(2)-O(3)	55.0(6)	O(1)#5-Zn(2)-O(3)	81.3(5)
O(5)#3-Zn(2)-O(2)#5	93.0(4)	O(8)#4-Zn(2)-O(2)#5	152.4(4)
O(4)-Zn(2)-O(2)#5	95.4(5)	O(1)#5-Zn(2)-O(2)#5	54.6(4)
O(3)-Zn(2)-O(2)#5	82.8(4)	Zn(2)#6-O(1)-Zn(1)	101.6(4)
Summatry transformation	ma used to comparete	agriculant stomas #1	

 Table S1. Bond lengths [Å] and angles [°] for complex 1-3.

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z; #2 x+1,-y+3/2,z+1/2; #3 -x,-y+1,-z; #4 x,-y+3/2,z+1/2; #5 -x+1,y-1/2,-z+1/2; #6 -x+1,y+1/2,-z+1/2; #7 x-1,-y+3/2,z-1/2; #8 x,-y+3/2,z-1/2.

Complex 3			
Zn(1)-O(1)#1	2.010(4)	Zn(1)-O(1)	2.010(4)
Zn(1)-O(7)#2	2.043(4)	Zn(1)-O(7)#3	2.043(4)
Zn(1)-O(3)#4	2.252(4)	Zn(1)-O(3)#5	2.252(4)

Zn(2)-O(2)#6	1.972(4)	Zn(2)-O(8)#7	1.998(5)
Zn(2)-O(5)#8	2.006(4)	Zn(2)-O(3)	2.012(4)
O(2)-Zn(2)#4	1.972(4)	O(3)-Zn(1)#6	2.252(4)
O(5)-Zn(2)#9	2.006(4)	O(7)-Zn(1)#10	2.044(4)
O(8)-Zn(2)#11	1.998(4)		
O(1)#1-Zn(1)-O(1)	179.999(1)	O(1)#1-Zn(1)-O(7)#2	96.21(18)
O(1)-Zn(1)-O(7)#2	83.79(18)	O(1)#1-Zn(1)-O(7)#3	83.86(18)
O(1)-Zn(1)-O(7)#3	96.21(18)	O(7)#2-Zn(1)-O(7)#3	180.00(2)
O(1)#1-Zn(1)-O(3)#4	91.34(17)	O(1)-Zn(1)-O(3)#4	88.66(17)
O(7)#2-Zn(1)-O(3)#4	92.57(16)	O(7)#3-Zn(1)-O(3)#4	87.43(16)
O(1)#1-Zn(1)-O(3)#5	88.66(17)	O(1)-Zn(1)-O(3)#5	91.34(17)
O(7)#2-Zn(1)-O(3)#5	87.436(16)	O(7)#3-Zn(1)-O(3)#5	92.57(16)
O(3)#4-Zn(1)-O(3)#5	180.0	O(2)#6-Zn(2)-O(8)#7	107.23(19)
O(2)#6-Zn(2)-O(5)#8	105.64(18)	O(8)#7-Zn(2)-O(5)#8	101.79(18)
O(2)#6-Zn(2)-O(3)	112.25(18)	O(8)#7-Zn(2)-O(3)	101.71(17)
O(5)#8-Zn(2)-O(3)	126.28(18)		
Symmetry transformations u	sed to generate e	quivalent atoms: #1 -x+2,-y	y,-z+1; #2 -x+1,-y,-z;

#3 x+1,y,z+1 #4 x+1,y,z; #5 -x+1,-y,-z+1; #6 x-1,y,z; #7 x,y,z+1; #8 x,y+1,z+1; #9 x,y-1,z-1; #10 x-1,y,z-1; #11 x,y,z-1.

Table S2.	Hvdrogen	bonds for	1-3	[Å and °].	
	II, GIO SOIL	001100 101	. .	1 i una li	

D-H···A	d(D-H)	d(H···A)	d(D···A)	<(DHA)
		u(11 /1)	u(D II)	(DIIII)
	Com	plex I		
O(1W)-H(1WB)O(2)#4	0.90	1.89	2.762(9)	164.1
O(1W)-H(1WA)O(4)#5	0.82	2.23	2.975(12)	151.2
Symmetry codes: #1 x,y,z+1; #2 -	x,-y,-z, #3 x,	y,z-1; #4 -x+1,-;	y+1,-z+1; #5 -x+1,	-y,-z;
	Com	plex 2		
O(1W)-H(1WB)O(7)#1	0.85	2.58	3.100(17)	120.2
Symmetry codes: #1 -x+1,-y+2,-z; #2 x+1,-y+3/2,z+1/2; #3 -x,-y+1,-z; #4 x,-y+3/2,z+1/2; #5				
-x+1,y-1/2,-z+1/2; #6 -x+1,y+1/2,	-z+1/2; #7 x-	-1,-y+3/2,z-1/2; -	#8 x,-y+3/2,z-1/2.	
	Com	plex 3		
N(4)-H(4A)O(1W)#12	0.86	2.40	3.147(10)	146.0
N(4)-H(4B)O(1W)	0.86	2.25	3.101(10)	170.6
O(1W)-H(1WA)O(6)#8	0.85	2.15	2.939(8)	154.2
O(1W)-H(1WB)O(6)#13	0.85	2.12	2.940(8)	162.3
N(3)-H(3A)O(4)#11	0.86	2.00	2.844(9)	168.2
Symmetry codes: #1 -x+2,-y,-z+1; #2 -x+1,-y,-z; #3 x+1,y,z+1; #4 x+1,y,z; #5 -x+1,-y,-z+1				
#6 x-1,y,z; #7 x,y,z+1; #8 x,y+1,z+1; #9 x,y-1,z-1; #10 x-1,y,z-1; #11 x,y,z-1; #12 -x,-y,-z;				
#13 -x+1,-y+1,-z+1.				

Table S3. N₂ adsorption data of complex 3.

ASAP 2020 V4.00 Unit 1 Serial #: 1528 Page 1 (V4.00 H)

Sample:	xff-01		
Operator:	wwj		
Submitter:			
File:	C:\2020\DATA\ZMB-	MIC.SMP	
Started:	5/27/2012	Analysis	N2
	10:16:51AM	Adsorptive:	
Completed:	5/27/2012	Analysis Bath	-195.767 癈
	11:56:03AM	Temp.:	
Report Time:	5/28/2012	Thermal	No
	1:28:39PM	Correction:	
Sample Mass:	0.0487 g	Warm Free Space:	27.9585
Cold Free Space:	84.7784 cm	Equilibration Interval:	30 s
Ambient	22.00 癈	Low Pressure	3.000 cm?g STP
Temperature:		Dose:	C C
Automatic Degas:	Yes		

Horvath-Kawazoe Differential Pore Volume Plot Sphere Pore Geometry

xff-01

Pore Width (?	dV/dw (cm?g放)
9.447	1.28922E-06
10.6917	5.01834E-06
11.57207631	5.92535E-06
12.5250901	8.01892E-05
12.95979262	-9.92112E-06
13. 42901053	0.000153996

Summary Report

Horvath-Kawazoe

Maximum pore volume at P/Po = 0.010	018259: 0.000168 cm?g
-------------------------------------	-----------------------

Median pore width: