Evaluation of Viability of Halogen…O₂N Interactions: Insight from Crystal Packing in a Series of Isomeric Halo and Nitro Substituted Triaryl Compounds with Modular Positioning of Halogen and NO₂ Groups

C. V. Ramana,^{a, *} Yogesh Goriya,^a Kulbhushan A. Durugkar,^a Soumitra Chatterjee,^a

Shobhana Krishnaswamy^b and Rajesh G. Gonnade^{b, *}

^aDivision of Organic Chemistry, National Chemical laboratory (CSIR-NCL), Pune, India. Fax: 91 20 2590 2629; Tel: 91 20 2590 2577; E-mail: vr.chepuri@ncl.res.in

^bCenter for Materials Characterization, National Chemical laboratory (CSIR-NCL), Pune, India. Fax: 91 20 2590 2642; Tel: 91 20 2590 2252; E-mail: rg.gonnade@ncl.res.in

Table of content	SI 3
Figure S1. Schematic representation of halogen…halogen interactions	SI 6
Figure S2 . Schematic view of approach of electrophile and nucleophile towards halogen atom	SI 6
Figure S3. Molecular packing in 2N2Br	SI 7
Figure S4. Molecular packing in 2N3Br	SI 8
Figure S5. Molecular packing in 2N4Cl	SI 9
Figure S6. Molecular packing in 3N3Br	SI 10
Figure S7. Molecular packing in 3N4Cl	SI 11
General procedure A and B	SI 12
Characterization data of all 30 isomers	SI 13 – 20
Crystal structure data for non-halo and bromo derivatives	SI 51 - 52

S. No	Compound	Data	Page No
1	NO ₂ N=N	¹ H NMR Spectrum	21
	N N	¹³ C NMR Spectrum	21
	2N	ORTEP (Figure S8)	53
	N=N (¹ H NMR Spectrum	22
2	O ₂ N N	¹³ C NMR Spectrum	22
	3N	ORTEP (Figure S9)	54
	N=N	¹ H NMR Spectrum	23
3	Ń	¹³ C NMR Spectrum	23
	O ₂ N 4N	ORTEP (Figure S10)	55
	NO ₂ N=N	¹ H NMR Spectrum	24
4	Ń	¹³ C NMR Spectrum	24
		ORTEP (Figure S11)	56
	NO ₂ N=N	¹ H NMR Spectrum	25
5	Ń	¹³ C NMR Spectrum	25
	2N3CI CI	ORTEP (Figure S12)	57
	NO ₂ N=N	¹ H NMR Spectrum	26
6	Ń CI	¹³ C NMR Spectrum	26
	2N4CI	ORTEP (Figure S13)	58
	N=N	¹ H NMR Spectrum	27
7		¹³ C NMR Spectrum	27
		ORTEP (Figure S14)	59
	N=N	¹ H NMR Spectrum	28
8	O ₂ N N	¹³ C NMR Spectrum	28
	3N3CI CI	ORTEP (Figure S15)	60
		¹ H NMR Spectrum	29
9		¹³ C NMR Spectrum	29
		ORTEP (Figure S16)	61
10	N=N	¹ H NMR Spectrum	30
	N N	¹³ C NMR Spectrum	30
	0 ₂ N 4N2CI CI	ORTEP (Figure S17)	62
	N=N	¹ H NMR Spectrum	31
11		¹³ C NMR Spectrum	31
	O ₂ N 4N3CI ČI	ORTEP (Figure S18)	63
	N=N	¹ H NMR Spectrum	32
12		¹³ C NMR Spectrum	32
		ORTEP (Figure S19)	64
	NO ₂ N=N	¹ H NMR Spectrum	33
13		¹³ C NMR Spectrum	33
	2N2Br ^{Br}	ORTEP (Figure S20)	65

	NO ₂ N=N	¹ H NMR Spectrum	34
14	Ń	¹³ C NMR Spectrum	34
	2N3Br Br	ORTEP (Figure S21)	66
	NO ₂ N=N	¹ H NMR Spectrum	35
15	М Вr	¹³ C NMR Spectrum	35
	2N4Br	ORTEP (Figure S22)	67
	N=N	¹ H NMR Spectrum	36
16	O ₂ N N	¹³ C NMR Spectrum	36
	3N2Br	ORTEP (Figure S23)	68
	N=N,	¹ H NMR Spectrum	37
17	O ₂ N N	¹³ C NMR Spectrum	37
	3N3Br Br	ORTEP (Figure S24)	69
	N=N	¹ H NMR Spectrum	38
18	O ₂ N N Br	¹³ C NMR Spectrum	38
	3N4Br	ORTEP (Figure S25)	70
	N=N	¹ H NMR Spectrum	39
19	N N	¹³ C NMR Spectrum	39
	O ₂ N 4N2Br Br	ORTEP (Figure S26)	71
	N=N	¹ H NMR Spectrum	40
20	Ň	¹³ C NMR Spectrum	40
	O ₂ N 4N3Br Br	ORTEP (Figure S27)	72
	N=N	¹ H NMR Spectrum	41
21	N Br	¹³ C NMR Spectrum	41
	O ₂ N 4N4Br	ORTEP (Figure S28)	73
	NO ₂ N=N	¹ H NMR Spectrum	42
22	Ń	¹³ C NMR Spectrum	42
	2N2I I	ORTEP (Figure S29)	74
	NO ₂ N=N	¹ H NMR Spectrum	43
23	N	¹³ C NMR Spectrum	43
	2N3I	ORTEP (Figure S30)	75
	NO ₂ N=N	¹ H NMR Spectrum	44
24	Ň I	¹³ C NMR Spectrum	44
	2N4I	ORTEP (Figure S31)	76
	N=N	¹ H NMR Spectrum	45
25		¹³ C NMR Spectrum	45
	3N2I I [′]	ORTEP (Figure S32)	77
26	N=N	¹ H NMR Spectrum	46
	O_2N	¹³ C NMR Spectrum	46
	3N3I	ORTEP (Figure S33)	78

	N=N	¹ H NMR Spectrum	47
27	O ₂ N N	¹³ C NMR Spectrum	47
	3N4I	ORTEP (Figure S34)	79
28	N=N	¹ H NMR Spectrum	48
		¹³ C NMR Spectrum	48
	O ₂ N 4N2I	ORTEP (Figure S35)	80
29	N=N	¹ H NMR Spectrum	49
	N_N	¹³ C NMR Spectrum	49
	O ₂ N 4N3I	ORTEP (Figure S36)	81
30	N=N	¹ H NMR Spectrum	50
	N I	¹³ C NMR Spectrum	50
	O ₂ N 4N4I	ORTEP (Figure S37)	82

Figure S1. Schematic representation of halogen ... halogen interactions.

C = Carbon atom, X = Halogen atom

Figure S2. Schematic view of approach of electrophile and nucleophile towards halogen atom.

Figure S3. Molecular packing viewed along *ac*-diagonal in **2N2Br**; the structure is isostructural with **2N2Cl**.

Figure S4. Molecular packing in 2N3Br; the structure is isostructural with 2N3I

Figure S5. Molecular packing viewed down *a*-axis in **2N4Cl** reveals layered structure of molecules B (blue) and C (red) encapsulating the layers of molecule A (green).

Figure S6. Molecular packing in 3N3Br; 3N3Br has similar organization as 3N3I.

Figure S7. Molecular packing in 3N4Cl; it has similar organization as 3N and 3N4Br.

Experimental:-

A General procedure for cycloaddition reactions with 2/4-nitroflurobenzenes:

Fluoronitrobenzene (100 mg, 0.71 mmol) was mixed with phenyl acetylene (72 mg, 0.71 mmol) in 9:1 DMSO:H₂O (10 mL). To the mixture were added L-proline (16 mg, 0.142 mmol), Na₂CO₃ (15 mg, 0.142 mmol), NaN₃ (55 mg, 0.852 mmol), sodium ascorbate (14 mg, 0.071 mmol), and CuSO₄.5H₂O (9 mg, 0.036 mmol). The mixture was stirred for 24-48 h at 70 °C (bath temperature) and then the mixture was poured into 30 mL of ice-cold water. The solid residue was filtered and crystallized from appropriate solvent systems to procure white to yellow crystalline solids in (57-83%) yield.

B General procedure for cycloaddition reactions with 3-azidobenzene:

A mixture of 3-Azidonitrobenzene (116 mg, 0.71 mmol), phenyl acetylene (72 mg, 0.71 mmol) was taken in 9:1 DMSO:H₂O (10 mL) in a round bottom flask and L-proline (16 mg, 0.142 mmol), Na₂CO₃ (15 mg, 0.142 mmol), sodium ascorbate (14 mg, 0.071 mmol), and CuSO₄.5H₂O (9 mg, 0.036 mmol) were added to that mixture and the complete reaction mixture was heated at 70 °C (bath temperature) for 24 h with stirring. The reaction mixture was cooled to room temperature and diluted with 30 mL of water and combined water layer was thoroughly extracted with ethyl acetate (3 x 50 mL). Organic layer was dried over sodium sulphate and concentrated under vacuum. The crude solid was purified by column chromatography over 230-400 silica using ethyl acetate-light petroleum (1:4) to obtain white to yellow solids (65-77%). This solid was crystallized from appropriate solvent system.

*1-(2-Nitrophenyl)-4-phenyl-1H-1,2,3-triazole (***2N**): mp: 140–141 °C; ¹H NMR (200 MHz, DMSO-d₆): δ 7.42–7.56 (m, 3H), 7.83–8.01 (m, 5H), 8.26 (dd, *J* = 1.1, 8.5 Hz, 1H), 9.20 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 120.7 (d), 125.4 (d, 2C), 125.6 (d), 127.4 (d), 128.5 (d), 129.1 (d, 3C), 129.8 (s), 131.3 (s), 134.5 (s), 144.0 (s), 147.1 (s) ppm; Anal. Calcd for C₁₄H₁₀N₄O₂: C, 63.15; H, 3.79; N, 21.04; O, 12.02; Found: C, 62.99; H, 3.67; N, 21.19.

4-(2-Chlorophenyl)-1-(2-nitrophenyl)-1H-1,2,3-triazole (**2N2Cl**): mp: 168–169 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.32 (dt, J = 1.6, 7.8 Hz, 1H), 7.41 (dt, J = 1.2, 7.7 Hz, 1H), 7.48 (dd, J = 0.8, 8.0 Hz, 1H), 7.69–7.73 (m, 2H), 7.82 (dt, J = 1.2, 7.8 Hz, 1H), 8.10 (dd, J = 1.2, 8.1 Hz, 1H), 8.32 (dd, J = 1.2, 7.8 Hz, 1H), 8.53 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 124.5 (d), 125.6 (d), 127.2 (d), 127.9 (d), 128.4 (s), 129.4 (d), 129.9 (d), 130.1 (s), 130.3 (d), 130.8 (d), 131.3 (s), 133.9 (d), 144.4 (s), 144.5 (s) ppm; Anal. Calcd for C₁₄H₉ClN₄O₂: C, 55.92; H, 3.02; Cl, 11.79; N, 18.63; Found: C, 55.87; H, 2.99; Cl, 11.75; N, 18.59.

4-(2-Bromophenyl)-1-(2-nitrophenyl)-1H-1,2,3-triazole (2N2Br): mp: 125–126 °C; ¹H (400 MHz, CDCl₃): δ 7.24 (dt, J = 1.7, 7.8 Hz, 1H), 7.46 (dt, J = 1.2, 7.8 Hz, 1H), 7.68 (dd, J = 1.0, 8.1 Hz, 1H), 7.73 (br. s, 1H), 7.75 (br. s, 1H), 7.83 (dt, J = 1.6, 8.1 Hz, 1H), 8.12 (dd, J = 1.5, 8.2 Hz, 1H), 8.24 (dd, J = 1.8, 7.8 Hz, 1H), 8.56 (s, 1H); ¹³C (100 MHz, CDCl₃): δ 121.3 (s), 124.3 (d), 125.7 (d, 2C), 127.4 (s), 127.8 (d), 128.1 (s), 129.7 (d), 130.7 (d), 130.9 (d), 133.7 (d, 2C), 142.0 (s), 145.9 (s) ppm; Anal. Calcd for C₁₄H₉BrN₄O₂: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27; Found: C, 48.98; H, 2.39; Br, 23.19; N, 16.51.

4-(2-Iodophenyl)-1-(2-nitrophenyl)-1H-1,2,3-triazole (2N2I): mp: 104–105 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.20 (dt, J = 1.7, 7.8 Hz, 1H), 7.55 (dt, J = 1.2, 7.7 Hz, 1H), 7.71 (dd, J = 1.6, 7.7 Hz, 1H), 7.88 (dt, J = 1.5, 7.9 Hz, 1H), 7.93–8.00 (m, 2H), 8.06 (dd, J = 0.8, 8.0 Hz, 1H), 8.27 (dd, J = 1.1, 8.1 Hz, 1H), 9.12 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 97.9 (s), 125.1 (d), 125.8 (d), 127.9 (d), 128.8 (d), 129.2 (s), 130.6 (d), 130.9 (d), 131.5 (d), 134.7 (d), 134.8 (s), 140.3 (d), 144.2 (s), 148.0 (s) ppm; Anal. Calcd for C₁₄H₉IN₄O₂: C, 42.88; H, 2.31; I, 32.36; N, 14.29; O, 8.16; Found: C, 42.94; H, 2.44; I, 32.23; N, 14.37.

4-(3-Chlorophenyl)-1-(2-nitrophenyl)-1H-1,2,3-triazole (**2N3Cl**): mp: 128–129 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.45 (ddd, J = 0.9, 1.9, 8.0 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.85–7.89 (m, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.93–8.01 (m, 3H), 8.24 (dd, J = 1.0, 8.3 Hz, 1H), 9.24 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 123.7 (d), 124.1 (d), 125.2 (d), 125.9 (d), 127.6 (d), 128.5 (d), 129.2 (s), 131.3 (d), 131.6 (d), 132.1 (s), 134.1 (s), 134.8 (d), 144.2 (s), 146.0 (s) ppm; Anal. Calcd for C₁₄H₉ClN₄O₂: C, 55.92; H, 3.02; Cl, 11.79; N, 18.63; Found: C, 55.97; H, 2.97; Cl, 11.77; N, 18.67.

4-(3-Bromophenyl)-1-(2-nitrophenyl)-1H-1,2,3-triazole (**2N3Br**): mp: 101–102 °C; ¹H (400 MHz, CDCl₃): δ 7.02–7.44 (m, 3H), 7.58–7.82 (m, 4H), 7.94–8.04 (m, 2H); ¹³C (100 MHz, CDCl₃): δ 121.4 (d), 123.1 (s), 124.5 (d), 125.7 (d), 126.9 (d), 127.90 (d), 129.0 (d), 130.5 (d), 130.8 (d), 131.5 (d), 131.8 (s), 133.8 (d), 144.4 (s), 146.9 (s) ppm; Anal. Calcd for C₁₄H₉BrN₄O₂: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27; Found: C, 48.76; H, 2.52; Br, 23.42; N, 16.11.

4-(3-Iodophenyl)-1-(2-nitrophenyl)-1H-1,2,3-triazole (**2N3I**): mp: 150–151 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.32 (t, *J* = 7.9 Hz, 1H), 7.77 (br d, *J* = 7.9 Hz, 1H), 7.88 (dt, *J* = 1.7, 7.8 Hz, 1H), 7.95–8.03 (m, 3H), 8.25 (dd, *J* = 1.1, 8.2 Hz, 1H), 8.30 (br t, *J* = 1.5 Hz, 1H), 9.26 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 95.7 (s), 123.6 (d), 124.8 (d), 125.9 (d), 127.6 (d), 129.2 (s), 131.5 (d), 131.6 (d), 132.2 (s), 133.9 (d), 134.8 (d), 137.2 (d), 144.2 (s), 145.7 (s) ppm; Anal. Calcd for C₁₄H₉IN₄O₂: C, 42.88; H, 2.31; I, 32.36; N, 14.29; O, 8.16; Found: C, 42.97; H, 2.19; I, 32.43; N, 14.38.

4-(4-Chlorophenyl)-1-(2-nitrophenyl)-1H-1,2,3-triazole (**2N4Cl**): mp: 136–138 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, J = 8.4 Hz, 2H), 7.67 (dd, J = 1.2, 7.7 Hz, 1H), 7.72 (dt, J = 1.2, 7.7 Hz, 1H), 7.80–7.84 (m, 3H), 8.08 (s, 1H), 8.10 (dd, J = 1.2, 8.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 121.1 (d), 125.6 (d), 127.2 (d, 2C), 127.9 (d), 128.2 (s), 129.1 (d, 2C), 130.1 (s), 130.9 (d), 133.9 (d), 134.4 (s), 144.3 (s), 147.3 (s) ppm; Anal. Calcd for C₁₄H₉ClN₄O₂: C, 55.92; H, 3.02; Cl, 11.79; N, 18.63; Found: C, 55.94; H, 2.99; Cl, 11.74; N, 18.60.

4-(4-Bromophenyl)-1-(2-nitrophenyl)-1H-1,2,3-triazole (**2N4Br**): mp: 136–137 °C; ¹H (400 MHz, CDCl₃): δ 7.40–7.50 (m, 1H), 7.57 (dt, *J* = 2.2, 8.7 Hz, 1H), 7.65–7.88 (m, 5H),

8.06 (s, 1H), 8.06–8.22 (m, 1H); ¹³C (100 MHz, CDCl₃): δ 121.0 (d), 122.7 (s), 125.6 (d), 127.5 (d, 2C), 127.9 (d), 129.8 (d), 130.8 (d), 132.2 (d, 2C), 132.4 (d), 133.8 (d), 144.4 (s), 147.4 (s) ppm; Anal. Calcd for C₁₄H₉BrN₄O₂: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27; Found: C, 48.44; H, 2.40; Br, 23.11; N, 16.41.

4-(4-Iodophenyl)-1-(2-nitrophenyl)-1H-1,2,3-triazole (**2N4I**): mp: 158–159 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.73–7.75 (m, 2H), 7.86 (dd, J = 1.8, 8.0 Hz, 1H), 7.87–7.89 (m, 2H), 7.96 (dt, J = 1.8, 8.0 Hz, 1H), 8.00 (dt, J = 1.2, 8.0 Hz, 1H), 8.25 (dd, J = 1.2, 8.1 Hz, 1H), 9.21 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 94.6 (s), 123.2 (d), 125.8 (d), 127.5 (d, 2C), 127.6 (d), 129.1 (s), 129.6 (s), 131.5 (d), 134.7 (d), 138.0 (d, 2C), 144.2 (s), 146.4 (s) ppm; Anal. Calcd for C₁₄H₉IN₄O₂: C, 42.88; H, 2.31; I, 32.36; N, 14.29; O, 8.16; Found: C, 42.79; H, 2.21; I, 32.23; N, 14.36.

1-(3-Nitrophenyl)-4-phenyl-1H-1,2,3-triazole (**3N**): mp: 204–205 °C; ¹H NMR (200 MHz, DMSO-d₆): δ 7.40–7.50 (m, 3H), 7.78 (t, J = 8.21 Hz, 1H), 7.91–7.93 (m, 2H), 8.25–8.33 (m, 2H), 8.30 (s, 1H), 8.65 (t, J = 2.20 Hz, 1H); ¹³C NMR (50 MHz, DMSO-d₆): δ 115.0 (d), 120.4 (d), 123.5 (d), 125.8 (d, 2C), 126.3 (d), 128.9 (d), 129.5 (d, 2C), 130.2 (s), 132.0 (d), 137.5 (s), 148.1 (s), 148.9 (s) ppm; Anal. Calcd for C₁₄H₁₀N₄O₂: C, 63.15; H, 3.79; N, 21.04; O, 12.02; Found: C, 63.06; H, 3.88; N, 20.89.

4-(2-Chlorophenyl)-1-(3-nitrophenyl)-1H-1,2,3-triazole (**3N2Cl**): mp: 149–150 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.35 (dt, J = 1.7, 7.6 Hz, 1H), 7.43 (dt, J = 1.2, 7.6 Hz, 1H), 7.48 (dd, J = 1.0, 8.1 Hz, 1H), 7.70 (t, J = 8.3 Hz, 1H), 8.26 (dd, J = 1.9, 8.1 Hz, 1H), 8.33 (dt, J = 1.7, 7.8 Hz, 2H), 8.69 (t, J = 2.2 Hz, 1H), 8.74 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 115.3 (d), 120.9 (d), 123.3 (d), 126.0 (d), 127.3 (d), 128.3 (s), 129.7 (d), 130.0 (d), 130.4 (d), 131.0 (d), 131.4 (s), 137.7 (s), 145.3 (s), 149.0 (s) ppm; Anal. Calcd for C₁₄H₉ClN₄O₂: C, 55.92; H, 3.02; Cl, 11.79; N, 18.63; Found: C, 55.97; H, 2.97; Cl, 11.73; N, 18.60.

4-(2-Bromophenyl)-1-(3-nitrophenyl)-1H-1,2,3-triazole (**3N2Br**): mp: 131–132 °C. ¹H (400 MHz, CDCl₃): δ 7.25 (ddd, J = 1.8, 7.4, 9.2 Hz, 1H), 7.46 (dt, J = 1.3, 7.8 Hz, 1H), 7.69 (dd, J = 1.1, 8.1 Hz, 1H), 7.78 (t, J = 8.2 Hz, 1H), 8.20 (dd, J = 1.8, 7.8 Hz, 1H), 8.27 (ddd, J = 1.0, 2.1, 8.2 Hz, 1H), 8.33 (ddd, J = 1.0, 2.1, 8.2 Hz, 1H), 8.66 (t, J = 2.1 Hz,

1H), 8.79 (s, 1H): ¹³C (100 MHz, CDCl₃): δ 115.3 (d), 120.6 (d), 121.3 (s), 123.2 (d), 126.0 (d), 127.9 (d), 129.9 (d), 130.4 (s), 130.8 (d), 131.0 (d), 133.7 (d), 137.8 (s), 146.6 (s), 149.1 (s) ppm; Anal. Calcd for C₁₄H₉BrN₄O₂: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27; Found: C, 49.00; H, 2.81; Br, 23.42; N, 16.11.

4-(2-Iodophenyl)-1-(3-nitrophenyl)-1H-1,2,3-triazole (**3N2I**): mp: 122–123 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.22 (dt, J = 1.7, 7.8 Hz, 1H), 7.55 (dt, J = 1.1, 7.6 Hz, 1H), 7.68 (dd, J = 1.6, 7.7 Hz, 1H), 7.95 (t, J = 8.2 Hz, 1H), 8.06 (dd, J = 0.9, 7.9 Hz, 1H), 8.37 (br dd, J = 1.7, 8.3 Hz, 1H), 8.50 (br dd, J = 1.7, 8.2 Hz, 1H), 8.83 (t, J = 2.1 Hz, 1H), 9.44 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 98.1 (s), 115.1 (d), 122.5 (d), 123.5 (d), 126.4 (d), 128.8 (d), 130.8 (d), 131.0 (d), 131.9 (d), 134.9 (s), 137.3 (s), 140.2 (d), 148.9 (s), 149.0 (s) ppm; Anal. Calcd for C₁₄H₉IN₄O₂: C, 42.88; H, 2.31; I, 32.36; N, 14.29; O, 8.16; Found: C, 42.81; H, 2.42; I, 32.27; N, 14.41.

4-(3-Chlorophenyl)-1-(3-nitrophenyl)-1H-1,2,3-triazole (**3N3Cl**): mp: 185–186 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.40 (dd, J = 1.0, 7.7 Hz, 1H), 7.50 (t, J = 7.9 Hz, 1H), 7.86–7.91 (m, 3H), 8.30 (dd, J = 1.6, 8.3 Hz, 1H), 8.37 (dd, J = 1.4, 8.0 Hz, 1H), 8.68 (t, J = 2.0 Hz, 1H), 9.57 (s, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 114.6 (d), 120.8 (d), 123.4 (d), 124.0 (d), 125.2 (d), 125.9 (d), 128.4 (d), 131.2 (d), 131.8 (d), 132.1 (s), 134.0 (s), 137.2 (s), 146.5 (s), 148.7 (s) ppm; Anal. Calcd for C₁₄H₉ClN₄O₂: C, 55.92; H, 3.02; Cl, 11.79; N, 18.63; Found: C, 55.94; H, 2.99; Cl, 11.80; N, 18.67.

4-(3-Bromophenyl)-1-(3-nitrophenyl)-1H-1,2,3-triazole (**3N3Br**): mp: 195–196 °C; ¹H (400 MHz, DMSO-d₆): δ 7.37–7.54 (m, 2H), 7.84–7.99 (m, 2H), 8.14 (t, *J* = 1.6 Hz, 1H), 8.32 (dd, *J* = 1.6, 8.3 Hz, 1H), 8.46 (dd, *J* = 1.6, 8.3 Hz, 1H), 8.86 (t, *J* = 2.0 Hz, 1H), 9.58 (s, 1H); ¹³C (100 MHz, DMSO-d₆): δ 112.7 (d), 118.5 (d), 120.7 (s), 121.1 (d), 122.4 (d), 123.8 (d), 126.4 (d), 129.1 (d), 129.2 (d), 129.6 (d), 130.6 (s), 135.6 (s), 144.8 (s), 146.9 (s) ppm; Anal. Calcd for C₁₄H₉BrN₄O₂: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27; Found: C, 48.91; H, 2.83; Br, 23.09; N, 16.06.

4-(3-Iodophenyl)-1-(3-nitrophenyl)-1H-1,2,3-triazole (**3N3I**): mp: 198–199 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.33 (t, *J* = 7.8 Hz, 1H), 7.77 (br d, *J* = 8.0 Hz, 1H), 7.94 (t, *J* = 8.2 Hz, 1H), 8.00 (br d, *J* = 7.8 Hz, 1H), 8.31 (t, *J* = 1.5 Hz, 1H), 8.36 (dd, *J* = 1.8, 8.2 Hz,

1H), 8.45 (dd, J = 1.8, 8.1 Hz, 1H), 8.77 (t, J = 2.0 Hz, 1H), 9.65 (s, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ 95.7 (s), 114.7 (d), 120.9 (d), 123.4 (d), 123.7 (d), 126.1 (d), 131.4 (d), 131.9 (d), 132.3 (s), 133.9 (d), 137.2 (d), 137.3 (s), 146.3 (s), 146.8 (s) ppm; Anal. Calcd for C₁₄H₉IN₄O₂: C, 42.88; H, 2.31; I, 32.36; N, 14.29; O, 8.16; Found: C, 43.02; H, 2.39; I, 32.48; N, 14.17.

4-(4-Chlorophenyl)-1-(3-nitrophenyl)-1H-1,2,3-triazole (**3N4Cl**): mp: 223–224 °C; ¹H NMR (200 MHz, DMSO-*d*₆): δ 7.37 (dd, J = 2.2, 8.5 Hz, 2H), 7.74–7.88 (m, 3H), 8.17 (dd, J = 1.6, 8.0 Hz, 1H), 8.31–8.36 (m, 1H), 8.72 (t, J = 2.1 Hz, 1H), 9.37 (s, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 113.2 (d), 118.1 (d), 121.3 (d), 124.1 (d), 125.6 (d, 2C), 127.4 (d, 2C), 127.5 (s), 129.7 (d), 132.1 (s), 136.2 (s), 145.7 (s), 147.3 (s) ppm; Anal. Calcd for C₁₄H₉ClN₄O₂: C, 55.92; H, 3.02; Cl, 11.79; N, 18.63; Found: C, 55.88; H, 2.99; Cl, 11.79; N, 18.69.

4-(4-Bromophenyl)-1-(3-nitrophenyl)-1H-1,2,3-triazole (**3N4Br**): mp: 230–231 °C; ¹H (400 MHz, DMSO-d₆): δ 7.46 (br. s, 1H), 7.50 (br. s, 1H), 7.71–7.78 (m, 3H), 8.18 (dd, J = 2.1, 8.1 Hz, 1H), 8.30 (dd, J = 2.5, 8.2 Hz, 1H), 8.68 (t, J = 2.1 Hz, 1H), 9.35 (s, 1H); ¹³C (100 MHz, DMSO-d₆): δ 112.8 (d), 118.2 (d), 120.0 (s), 121.2 (d), 123.9 (d), 125.1 (d), 125.6 (d), 127.5 (s), 127.7 (d), 129.7 (d), 130.1 (d), 135.7 (s), 145.3 (s), 146.9 (s) ppm; Anal. Calcd for C₁₄H₉BrN₄O₂: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27; Found: C, 48.75; H, 2.81; Br, 23.23; N, 16.30.

4-(4-Iodophenyl)-1-(3-nitrophenyl)-1H-1,2,3-triazole (**3N4I**): mp: 217–218 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.74–7.76 (m, 2H), 7.88–7.90 (m, 2H), 7.94 (t, J = 8.2 Hz, 1H), 8.34–8.37 (m, 1H), 8.43–8.46 (m, 1H), 8.77 (t, J = 2.1 Hz, 1H), 9.61 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 94.8 (s), 114.8 (d), 120.6 (d), 123.5 (d), 126.2 (d), 127.5 (d, 2C), 129.7 (s), 131.9 (d), 137.3 (s), 138.1 (d, 2C), 147.0 (s), 148.8 (s) ppm; Anal. Calcd for C₁₄H₉IN₄O₂: C, 42.88; H, 2.31; I, 32.36; N, 14.29; O, 8.16; Found: C, 42.77; H, 2.42; I, 32.22; N, 14.40.

1-(4-Nitrophenyl)-4-phenyl-1H-1,2,3-triazole (**4N**): mp: 236–238 °C; ¹H NMR (200 MHz, DMSO-d₆): δ 7.41–7.56 (m, 3H), 7.93–7.98 (m, 2H), 8.23–8.28 (m, 2H), 8.47–8.51 (m, 2H), 9.48 (s, 1H); ¹³C NMR (125 MHz, DMSO-d₆): δ 120.1 (d), 120.6 (d, 2C), 125.5 (d,

2C), 125.7 (d, 2C), 128.7 (d), 129.2 (d, 2C), 129.8 (s), 140.9 (s), 146.8 (s), 147.9 (s) ppm; Anal. Calcd for C₁₄H₁₀N₄O₂: C, 63.15; H, 3.79; N, 21.04; O, 12.02; Found: C, 63.31; H, 3.53; N, 20.91.

4-(2-Chlorophenyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (**4N2Cl**): mp: 214–216 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.44–7.52 (m, 2H), 7.62 (d, *J* = 7.5 Hz, 1H), 8.08 (dd, *J* = 1.5, 7.5 Hz, 1H), 8.33 (d, *J* = 8.8 Hz, 2H), 8.45 (d, *J* = 9.0 Hz, 2H), 9.42 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 120.8 (d, 2C), 122.5 (d), 125.4 (d, 2C), 127.6 (d), 128.3 (s), 130.0 (d), 130.1 (d), 130.3 (d), 130.8 (s), 140.7 (s), 144.4 (s), 146.8 (s) ppm; Anal. Calcd for C₁₄H₉ClN₄O₂: C, 55.92; H, 3.02; Cl, 11.79; N, 18.63; Found: C, 55.97; H, 2.97; Cl, 11.77; N, 18.67.

4-(2-Bromophenyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (**4N2Br**): mp: 170–171 °C; ¹H (400 MHz, CDCl₃): δ 7.26 (ddd, J = 1.8, 7.4, 9.2 Hz, 1H), 7.47 (dt, J = 1.2, 7.8 Hz, 1H), 7.69 (dd, J = 1.2, 7.9 Hz, 1H), 8.04 (t, J = 2.6 Hz, 1H), 8.09 (t, J = 2.6 Hz, 1H), 8.2 (dd, J = 1.6, 7.8 Hz, 1H), 8.42 (t, J = 2.6 Hz, 1H), 8.47 (t, J = 2.6 Hz, 1H), 8.79 (s, 1H); ¹³C (100 MHz, CDCl₃): δ 120.5 (d), 121.3 (s), 124.1 (d), 124.9 (d), 125.6 (d), 127.9 (d), 130.0 (d), 130.2 (d), 130.8 (d), 131.9 (s), 133.8 (d), 141.1 (s), 146.7 (s), 147.3 (s) ppm; Anal. Calcd for C₁₄H₉BrN₄O₂: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27; Found: C, 48.57; H, 2.90; Br, 22.89; N, 16.12.

4-(2-Iodophenyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (**4N2I**): mp: 148–149 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.22 (dt, *J* = 1.7, 7.7 Hz, 1H), 7.55 (dt, *J* = 1.1, 7.5 Hz, 1H), 7.67 (dd, *J* = 1.6, 7.7 Hz, 1H), 8.06 (dd, *J* = 0.9, 7.9 Hz, 1H), 8.29–8.33 (m, 2H), 8.47–8.51 (m, 2H), 9.36 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 98.0 (s), 120.9 (d, 2C), 122.4 (d), 125.8 (d, 2C), 128.7 (d), 130.8 (d), 131.0 (d), 134.8 (s), 140.1 (d), 140.9 (s), 147.0 (s), 149.13 (s) ppm; Anal. Calcd for C₁₄H₉IN₄O₂: C, 42.88; H, 2.31; I, 32.36; N, 14.29; O, 8.16; Found: C, 42.96; H, 2.43; I, 32.48; N, 14.17.

4-(3-Chlorophenyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (**4N3Cl**): mp: 222–223 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.40 (dd, J = 0.9, 8.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.90 (t, J = 1.9 Hz, 1H), 8.15 (d, J = 9.0 Hz, 2H), 8.41 (d, J = 9.0 Hz, 2H), 9.49 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 120.7 (d, 2C), 120.9 (d), 124.1

(d), 125.3 (d), 125.9 (d, 2C), 128.5 (d), 131.3 (d), 132.0 (s), 134.1 (s), 140.9 (s), 146.7 (s), 147.0 (s) ppm; Anal. Calcd for C₁₄H₉ClN₄O₂: C, 55.92; H, 3.02; Cl, 11.79; N, 18.63; Found: C, 55.87; H, 3.03; Cl, 11.73; N, 18.61.

4-(3-Bromophenyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (**4N3Br**): mp: 217–218 °C; ¹H (400 MHz, DMSO-d₆): δ 7.36–7.54 (m, 2H), 7.96 (dt, J = 1.8, 7.6 Hz, 1H), 8.14 (t, J = 1.6 Hz, 1+H), 8.26, 8.31, 8.45, 8.51 (4br. m, 4H), 9.47 (s, 1H); ¹³C (100 MHz, DMSO-d₆): δ 118.6 (d, 2C), 120.8 (d), 122.6 (s), 123.8 (d), 124.1 (d), 126.5 (d), 127.4 (d), 129.1 (d), 129.4 (d), 130.5 (s), 139.3 (s), 145.0 (s), 145.1 (s) ppm; Anal. Calcd for C₁₄H₉BrN₄O₂: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27; Found: C, 48.63; H, 2.88; Br, 23.29; N, 16.48.

4-(3-Iodophenyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (4N3I): mp: 188–189 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.18 (t, *J* = 7.9 Hz, 1H), 7.63 (dt, *J* = 1.2, 8.0 Hz, 1H), 7.90–7.92 (m, 1H), 8.17–8.21 (m, 2H), 8.26 (t, *J* = 1.5 Hz, 1H), 8.36–8.39 (m, 2H), 9.29 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 94.6 (s), 119.6 (d), 120.1 (d, 2C), 124.6 (d), 125.2 (d, 2C), 130.6 +(d), 131.9 (s), 134.0 (d), 136.9 (d), 140.9 (s), 146.5 (s), 146.6 (s) ppm; Anal. Calcd for C₁₄H₉IN₄O₂: C, 42.88; H, 2.31; I, 32.36; N, 14.29; O, 8.16; Found: C, 42.74; H, 2.16; I, 32.51; N, 14.46.

4-(4-Chlorophenyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (4N4Cl): mp: 246–248 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.58 (d, J = 5.6 Hz, 2H), 7.95 (d, J = 5.6 Hz, 2H), 8.23 (d, J = 7.0 Hz, 2H), 8.48 (d, J = 7.0 Hz, 2H), 9.53 (s, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 120.5 (d), 120.6 (d, 2C), 125.8 (d, 2C), 127.2 (d, 2C), 128.8 (s), 129.3 (d, 2C), 133.2 (s), 140.9 (s), 146.9 (s, 2C) ppm; Anal. Calcd for C₁₄H₉ClN₄O₂: C, 55.92; H, 3.02; Cl, 11.79; N, 18.63; Found: C, 55.87; H, 2.95; Cl, 11.72; N, 18.58.

4-(4-Bromophenyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (4N4Br): mp: 149–150 °C; ¹H (400 MHz, DMSO-d₆): δ 7.64 (t, J = 2.1 Hz, 1H), 7.77 (t, J = 1.7 Hz, 1H), 7.82 (t, J = 2.3 Hz, 1H), 8.01 (t, J = 2.1 Hz, 1H), 8.06 (t, J = 2.0 Hz, 1H), 8.28 (t, J = 1.8 Hz, 1H), 8.44 (t, J = 1.9 Hz, 1H), 8.48 (t, J = 2.1 Hz, 1H), 9.49 (s, 1H); ¹³C (100 MHz, DMSO-d₆): δ 118.2 (d), 118.5 (d, 2C), 119.9 (s), 123.7 (d, 2C), 125.5 (d, 2C), 127.3 (s), 130.1 (d, 2C), 139.1 (s), 144.9 (s), 145.2 (s) ppm; Anal. Calcd for C₁₄H₉BrN₄O₂: C, 48.72; H, 2.63; Br, 23.15; N, 16.23; O, 9.27; Found: C, 48.70; H, 2.40; Br, 23.43; N, 16.01.

4-(4-Iodophenyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (4N4I): mp: 248–249 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.76 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 8.3 Hz, 2H), 8.25 (d, J = 9.1 Hz, 2H), 8.51 (d, J = 9.0 Hz, 2H), 9.59 (s, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 98.0 (s), 120.6 (d), 120.7 (d, 2C), 126.0 (d, 2C), 127.6 (d, 2C), 129.5 (s), 138.1 (d, 2C), 141.0 (s), 146.0 (s), 147.2 (s) ppm; Anal. Calcd for C₁₄H₉IN₄O₂: C, 42.88; H, 2.31; I, 32.36; N, 14.29; O, 8.16; Found: C, 42.77; H, 2.17; I, 32.49; N, 14.46.

17 Apr 2012 16/04/2008 18:17:02 32768 **Sweep Width (Hz)** Kulbhushan Date 1H Original Points Count 32768 Points Count 9014.42 -3.41 -2.50 N=N N 228333388 828333388 ~7.51 -7.50 -7.48 -7.48 -7.48 ĊI 3N3CI ΝO₂ . ۲ 1.00 ιĥ ** 3.03 7.9 1.05 1.03 1.07 1.00 7.5 8.3 8.0 7.8 77 76 74 8 1 3.03 Ц 8.0 1.07 Ц 9.5 1.00 1 L 1.05 ЦЦ 1.07 ЦЦ 7.5 9.0 3.5 3.0 7.0 6.5 6.0 5.5 5.0 4.5 4.0 2.5 2.0 1.5 1.0 0.5 0.0 17 Apr 2012 Acquisition Time (sec) 1.0486 Comment Frequency (MHz) 125.76 Nucleus Temperature (grad C) 0.000 0.000 16/04/2008 18:27:46 32768 **Sweep W** Date Points Count Kulbhushar 13C Original Points Count 32768 Sweep Width (Hz) 31250.00 DMSQ-d6 -114.57 -39.70 N=N -137.22 ~132.13 --131.83 --131.20 -128.40 -125.90 -125.16 -123.97 -123.37 -114.57 -134.05 -120.85 ĊΙ 3N3CI ΝO₂ 120 12

34

Crystallographic details

Crystal structure analysis of non-halo (2N, 3N and 4N) and bromo derivatives (2N2Br, 2N3Br, 2N4Br, 3N2Br, 3N3Br, 3N4Br, 4N2Br, 4N3Br and 4N4Br) have been reported earlier from our group (C. V. Ramana, S. Chatterjee, K. A. Durugkar and R. G. Gonnade, *CrystEngComm* 2009, 11, 143). These data were directly used in the analysis without further refinement. The crystal structure data for these compounds is given in Table S1, for ready reference.

Table S1: Summary of crystallographic data for non-halo and bromo derivatives

	2N	2N2Br	2N3Br	2N4Br	3N	3N2Br
Chemical formula	$C_{14}H_{10}N_4O_2$	C14H9BrN4O2	C14H9BrN4O2	C14H9BrN4O2	$C_{14}H_{10}N_4O_2$	C14H9BrN4O2
M_r	266.26	345.16	345.16	345.16	266.26	345.16
Crystal Size	0.43×0.41×0.26	0.77×0.68×0.54	0.51×0.23×0.13	0.68×0.25×0.20	0.31×0.22×0.20	0.76×0.07×0.06
Temp. (K)	297(2)	297(2)	297(2)	297(2)	297(2)	297(2)
Crystal system	monoclinic	monoclinic	Monoclinic	Monoclinic	monoclinic	monoclinic
Space group	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/c$	$P2_{1}/c$	$P2_1/n$
a/Å	12,180(4)	12,388(13)	9 2835(11)	5 4468(9)	8 502(3)	7 228(7)
b/Å	7 501(3))	8 051(9)	7 2943(9)	20.778(3)	5 3559(18)	13308(13)
c/Å	14277(5)	14.256(15)	20.794(2)	12.482(2)	27 363(9)	14.521(15)
c/ ⁰	90	90	90	90	90	90
β°	100.286(7)	103.305(18)	97.444(2)	102.427(3)	95.564(6)	93.675(19)
y/°	90	90	90	90	90	90
V/Å ³	1283.5(8)		139 1396.2(3)	1379.6(4)	1240.1(7)	1394(2)
$Z, D_{\text{calc}}/\text{g cm}^{-3}$	4, 1.378	4, 1.657	4, 1.642	4, 1.662	4, 1.426	4, 1.645
/mm · E(000)	0.097	2.981	2.954	2.989	0.100	2.959
$\theta \max/^{\circ}$	26.0	25.0	25.0	25.0	25.0	25.0
Absor. Correction	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
T_{min}	0.960	0.207	0.314	0.236	0.970	0.212
T _{max}	0.975	0.296	0.700	0.586	0.980	0.852
Reflections collecte	d 9605	6344	8147	6843	5402	9670
Unique reflections	2513	2419	2448	2427	2170	2455
Observed reflection $h \neq l$ (min max)	s 1001 (-14 15) (0.0)	1685 (_12_14) (_7_0)	1881	1896	1//9 (-10_10) (6 6)	(-8, 8) (15, 12)
n, n, i (IIIII, IIIaX)	(-14, 15), (-9, 9)	(-16 16)	(-24, 24)	(-0, 0), (-22, 24), (-9, 14)	(-10, 10), (-0, 0), (-32, 25)	(-0, 0), (-13, 13), (-17, 17)
$R_{\rm int}$	0.0446	0.052	0.024	0.0221	0.036	0.0269
Number of paramet	ers 221	190	190	226	181	379
R_1 _obs, R_1 _all	0.062, 0.0.0100	0.047, 0.070	0.0369, 0.0518	0.0361, 0.0503	0.0525, 0.0655	0.0342, 0.0492
wR_2 _obs, wR_2 _all	0.130, 0.148	0.124, 0.138	0.0876, 0.0942	0.0823, 0.0889	0.1260, 0.1328	0.0785, 0.0847
GoF	1.098	0.96	1.03	1.045	1.038	1.023
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}/eA$	670556	0.92, -0.28 679554	670558	670550	679560	0.44, -0.29 670561
CEDE NO.	077550	077554	077558	017557	077500	07501
	3N3Br	3N4Br	4N	4N2Br	4N3Br	4N4Br
Chemical formula	C14H9BrN4O2	$C_{14}H_9BrN_4O_2$	$C_{14}H_{10}N_4O_2$	$C_{14}H_9BrN_4O_2$	$C_{14}H_9BrN_4O_2$	$C_{14}H_9BrN_4O_2$
M_r	266.26	345.16	266.26	345.16	266.26	345.16
Crystal Size	0.33×0.26×0.09	0.37×0.32×0.03	0.69×0.52×0.08	0.68×0.25×0.20	0.88×0.13×0.08	0.82×0.43×0.12
Temp. (K)	297(2)	297(2)	297(2)	297(2)	297(2)	297(2)
Crystal system	Triclinic	Monoclinic	triclinic	Monoclinic	monoclinic	Triclinic
Space group	<i>P</i> -1	$P2_{1}/n$	<i>P</i> -1	C2/c	$P2_{1}/c$	<i>P</i> -1
a/Å	7.4402(6)	8.667(3)	5.757(2)	29.52(2)	7.5222(8)	9.6141(15)
b/Å	12.4535(10)	5.2323(18)	7.198(3)	7.057(5)	14.1697(15)	12.0915(19)
c/Å	14.6016(12)	30.304(11)	14.862(6)	13.022(9)	13.0479(14)	12.900(2)
$\tilde{\alpha}^{/\circ}$	91 2720(10)	90	101.081(6)	90	90	87 535(2)
в/°	98 9940(10)	96 248(6)	99 217(6)	97 405(12)	90 391(2)	71 407(2)
p, v/°	96 3090(10)	90	90.859(6)	90	90.591(2)	76 183(2)
$V/Å^3$	1327 14(19)	1366 0(8)	595 8(4)	2690(3)	1390 7(3)	1379 3(4)
$7 D_{-1}/g \text{ cm}^{-3}$	4 1 727	4 1 678	2 1 484	8 1 705	4 1 649	4 1 662
$Z, D_{calc}/g cm$ μ/mm^{-1}	4, 1.727	4, 1.078	2, 1.464	3,066	2 965	4, 1.002 2 990
F(000)	688	688	276	1376	688	688
$\theta \max/^{\circ}$	25.0	25.0	26.0	25.0	25.0	25.0
Absor. Correction	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
T _{min}	0.427	0.401	0.932	0.230	0.180	0.193
	0.767	0.915	0.992	0.580	0.789	0.715
collected	12926	6524	4652	6468	7835	13109
Unique reflections	4654	2403	2296	2377	2434	4834
Observed reflection	s3565	1718	2006	1764	1859	3401
<i>h</i> , <i>k</i> , <i>l</i> (min, max)	(-8, 8), (-14, 14),	(-9, 10), (-6, 5),	(-7, 7), (-8, 8),	(-34, 28), (-5, 8),	(-8, 8), (-16, 14),	(-11, 11), (-14,14),
^	(-17, 17)	(-36, 27)	(-16, 18)	(-15, 15)	(-15, 15)	(-15, 15)
R _{int}	0.0269	0.029	0.0181	0.0378	0.026	0.0356
Number 0	⁹¹ 379	226	221	199	190	379
R_1 obs R_2 all	0 0342 0 0492	0.0459.0.0675	0.0363 0.0414	0.0385.0.0556	0.0387.0.0547	0 0429 0 0674
wR_2 obs. wR_2 all	0.0785, 0.0847	0.1064, 0.1186	0.0996, 0.1042	0.0953, 0.1037	0.0958, 0.1033	0.1159, 0.1284
GoF	1.023	1.034	1.060	1.010	1.041	1.019
$\Delta ho_{ m max}, \Delta ho_{ m min}/e{ m \AA}^{-3}$	0.44, -0.29	0.65, -0.54	0.20, -0.17	0.31, -0.23	0.49, -0.44	0.86, -0.47
	(705()	(705(2	670564	670565	670566	670567

Figure S8. ORTEP of molecule in crystals of **2N**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S9. ORTEP of molecule in crystals of **3N**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S10. ORTEP of molecule in crystals of **4N**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S11. ORTEP of molecule in crystals of **2N2CI**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S12. ORTEP of molecule in crystals of **2N3Cl**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S13. ORTEP of molecule in crystals of **2N4CI**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S14. ORTEP of molecule in crystals of **3N2CI**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S15. ORTEP of molecule in crystals of **3N3Cl**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S16. ORTEP of molecule in crystals of **3N4Cl**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S17. ORTEP of molecule in crystals of **4N2CI**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S18. ORTEP of molecule in crystals of **4N3CI**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S19. ORTEP of molecule in crystals of **4N4C1**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S20. ORTEP of molecule in crystals of **2N2Br**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S21. ORTEP of molecule in crystals of **2N3Br**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S22. ORTEP of molecule in crystals of **2N4Br**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S23. ORTEP of molecule in crystals of **3N2Br**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S24. ORTEP of molecule in crystals of **3N3Br**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S25. ORTEP of molecule in crystals of **3N4Br**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S26. ORTEP of molecule in crystals of **4N2Br**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S27. ORTEP of molecule in crystals of **4N3Br**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S28. ORTEP of molecule in crystals of **4N4Br**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S29. ORTEP of molecule in crystals of **2N2I**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S30. ORTEP of molecule in crystals of **2N3I**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S31. ORTEP of molecule in crystals of **2N4I**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S32. ORTEP of molecule in crystals of **3N2I**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S33. ORTEP of molecule in crystals of **3N3I**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S34. ORTEP of molecule in crystals of **3N4I**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S35. ORTEP of molecule in crystals of **4N2I**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S36. ORTEP of molecule in crystals of **4N3I**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.

Figure S37. ORTEP of molecule in crystals of **4N4I**. Thermal ellipsoids are drawn at 50% probability level and H-atoms are depicted as spheres of arbitrary radii.