Supporting Information

Controlled synthesis of CuInS₂, Cu₂SnS₃ and Cu₂ZnSnS₄ nanostructures: insight into the universal phase-selectivity mechanism

Jin Chang and Eric R. Waclawik^{*}

School of Chemistry, Physics & Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane (QLD), 4000, Australia



Fig. S1 The unit cells and structure relations of ZnS, $CuInS_2$, Cu_2SnS_3 and Cu_2ZnSnS_4 with zincblende (left) and wurtzite (right) structures.

Crystal data

Formula		CuInS ₂										
Crystal system			Zincblende		Wurtzite							
Space group			F-43m (No. 216)		<i>P</i> 6 ₃ mc (No. 186)							
Unit cell dimensions			a = b = c = 5.523(8) Å		a = b = 3.897(5) Å, $c = 6.441(0)$ Å							
Atomic coordinates												
Atom	Wyck.	x/a	y/b	z/c	Atom	Wyck.	x/a	y/b	z/c			
Cu	4a	0	0	0	Cu	2b	1/3	2/3	0.3752			
In	4a	0	0	0	In	2b	1/3	2/3	0.3752			
S	4a	1/4	1/4	1/4	S	2b	1/3	2/3	0			

As shown in Figure S1, the Zn^{2+} sites in both zincblende and wurtzite ZnS can be replaced by a lower valence Cu^+ and a higher valence In^{3+} , giving $CuInS_2$ with remained crystal structures. Note that both Cu and In atoms occupy the same position and the both occupancy possibilities are 50%. Similarly, the Zn^{2+} sites of ZnS can also be replaced by a Cu^+ and a Sn^{3+} , resulting zincblende and wurtzite Cu_2SnS_3 structures. Both Cu and Sn atoms occupy the same position and the occupancy possibilities of Cu and Sn are 2/3 and 1/3, respectively. Furthermore, when Zn^{2+} sites in ZnS are replaced by Cu^+ , Zn^{2+} and Sn^{4+} , zincblende or wurtzite Cu_2ZnSnS_4 structures are obtained. In this case, Cu, Zn and Sn atoms occupy the same position, the occupancy possibilities of Cu, Zn and Sn are $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{4}$, respectively.

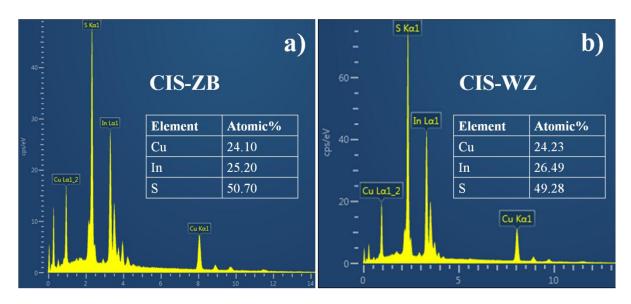


Fig. S2 EDS spectra of $CuInS_2$ nanocrystals with (a) zincblende and (b) wurtzite structures, respectively.

CIS samples	OLA	ODE	TOPO	OA	Crystal Structures
А	-	4.0 mL	-	-	ZB
В	0.5 mL	3.5 mL	-	-	ZB
С	2.0 mL	2.0 mL	-	-	ZB + WZ
D	3.5 mL	0.5 mL	-	-	WZ
E	4.0 mL	-	-	-	WZ
F	-	-	-	4.0 mL	ZB
G	-	-	4.0 g	-	WZ
H (hot-injection)	4.0 mL	-	-	-	ZB

Table S1 Influence of capping agents variable on the structure of $CuInS_2$ nanocrystals.

ZB stands for zincblende structure; WZ stands for wurtzite structure.

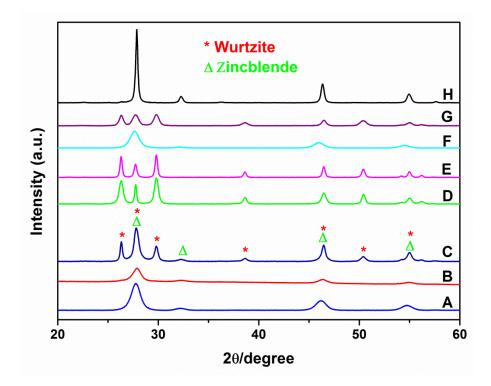
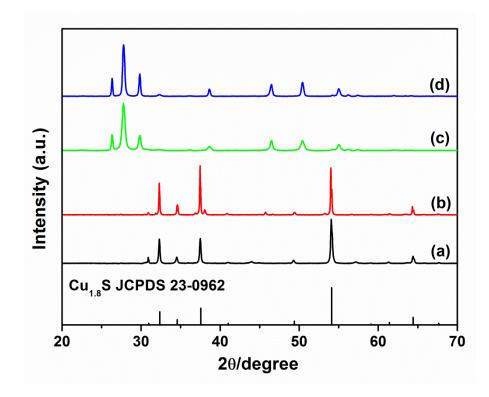



Fig. S3 XRD patterns of $CuInS_2$ samples A-H prepared in various reaction conditions listed in Table S1.

Fig. S4 XRD patterns of $Cu_{1.8}S$ nanocrystals prepared by the reaction of $CuCl_2$ in (a) ODE and (b) OLA. XRD patterns of CIS nanocrystals synthesized by ion exchange between indium acetate and $Cu_{1.8}S$ nanocrystals in (c) ODE and (d) OLA.

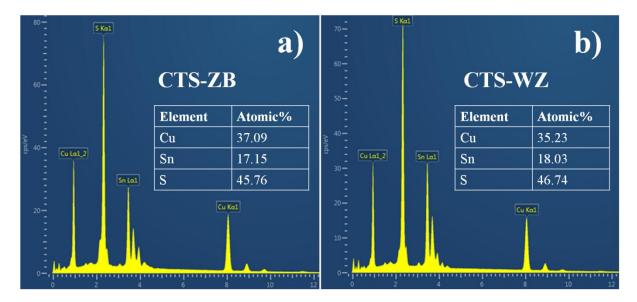


Fig. S5 EDS spectra of Cu_2SnS_3 nanocrystals with (a) zincblende and (b) wurtzite structures, respectively.

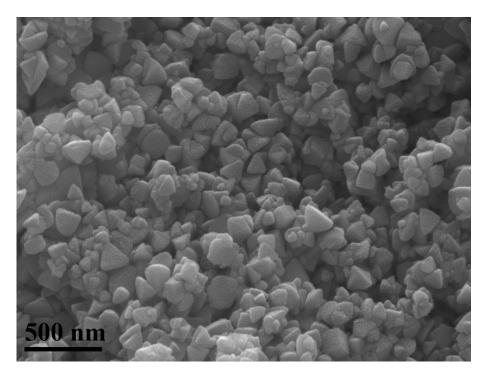


Fig. S6 FE-SEM image of zincblende Cu₂SnS₃ nanocrystals.

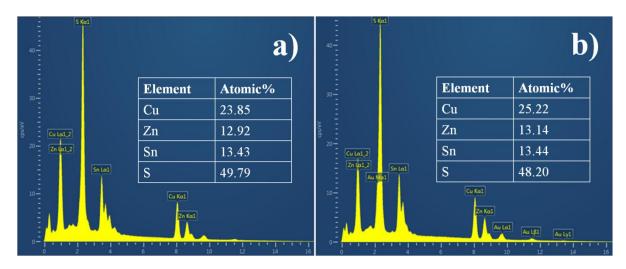


Fig. S7 EDS spectra of Cu_2ZnSnS_4 nanocrystals with (a) zincblende and (b) wurtzite structures, respectively.