Supporting Information for

Coordination polymers of lanthanide complexes with benzene dicarboxylato ligands

Yu-Hui Luo,^a Feng-Xia Yue,^a Xiao-Yang Yu,^{ab} Xin Chen,*^c and Hong Zhang*^a

^a Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China

^b College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, Jilin,

132022, P. R. China

^c School of Pharmaceutical & Life Sciences, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China

Synthesis of complexes 2–9, 11–13 and 14.

Nd(L¹)_{1.5}(H₂O)₂·H₂O (2): The procedure is similar to the synthesis of **1** except Pr(NO₃)₃·6H₂O was replaced by Nd(NO₃)₃·6H₂O (43.8 mg, 0.1 mmol). Light-purple block crystals of **2** were obtained in a yield of 65% based on Nd. Elemental Anal. Calcd for C₃₃H₂₄NdO₁₂ (756.76): C, 52.37; H, 3.19%. Found: C, 52.45; H, 3.13%. IR bands (KBr pellet, cm⁻¹): 3420 (m), 3058 (w), 1668 (s), 1640 (m), 1596 (m), 1479 (w), 1444 (w), 1398 (s), 1339 (m), 1255 (m), 1177 (w), 1020 (w), 950 (w), 923 (m), 891 (m), 803 (m), 770 (m), 692 (m), 620 (m), 523 (m), 489(m).

Sm(L¹)_{1.5}(H₂O)₂·H₂O (3): The procedure is similar to the synthesis of **1** except Pr(NO₃)₃·6H₂O was replaced by Sm(NO₃)₃·6H₂O (44.4 mg, 0.1 mmol). Light-yellow block crystals of **3** were obtained in a yield of 60% based on Sm. Elemental Anal. Calcd for C₃₃H₂₄SmO₁₂ (762.87): C, 51.95; H, 3.17%. Found: C, 51.87; H, 3.23%. IR bands (KBr pellet, cm⁻¹): 3444 (m), 3058 (w), 1670 (s), 1596 (s), 1481 (m), 1445 (m), 1400 (s), 1338 (m), 1255 (s), 1177 (m), 1147 (m), 1043 (w), 951 (w), 922 (m), 892 (w), 804 (m), 772 (w), 716 (m), 694 (m), 621 (w), 522(m), 490(m).

Eu(L^{1})_{1.5}(**H**₂**O**)₂·**H**₂**O** (4): The procedure is similar to the synthesis of **1** except Pr(NO₃)₃·6H₂O was replaced by Eu(NO₃)₃·6H₂O (44.6 mg, 0.1 mmol). Colorless block crystals of **4** were obtained in a yield of 65% based on Eu. Elemental Anal. Calcd for C₃₃H₂₄EuO₁₂ (764.48): C, 51.84; H, 3.16%. Found: C, 51.77; H, 3.20%. IR bands (KBr pellet, cm⁻¹): 3445 (m), 3058 (w), 1659 (s), 1597 (s), 1482 (m), 1446 (m), 1402 (s), 1340 (m), 1255 (m), 1178 (w), 1147 (w), 1043 (w), 951 (w), 922 (m), 840 (w), 805 (m), 773 (w), 716 (w), 696 (m), 621 (w), 523(m), 492(m).

 $Gd(L^{1})_{1.5}(H_2O)_2 \cdot H_2O$ (5): The procedure is similar to the synthesis of 1 except Pr(NO₃)₃·6H₂O was replaced by $Gd(NO_3)_3 \cdot 6H_2O$ (45.1 mg, 0.1 mmol). Colorless block crystals of 5 were obtained in a yield of 55% based on Gd. Elemental Anal. Calcd for $C_{33}H_{24}GdO_{12}$ (769.77): C, 51.49; H, 3.14%. Found: C, 51.55; H, 3.19%. IR bands (KBr pellet, cm⁻¹): 3445 (m), 3059 (w), 1660 (s), 1640 (m), 1598 (s), 1482 (m), 1447 (m), 1402 (s), 1341 (m), 1255 (m), 1178 (w), 1022

(w), 950 (w), 923 (m), 891 (m), 805 (m), 772 (w), 694 (w), 628 (w), 523 (m), 492(m).

Tb(L^1)_{1.5}(H_2O)₂· H_2O (6): The procedure is similar to the synthesis of 1 except Pr(NO₃)₃· $6H_2O$ was replaced by Tb(NO₃)₃· $6H_2O$ (45.3 mg, 0.1 mmol). Colorless block crystals of 6 were obtained in a yield of 45% based on Tb. Elemental Anal. Calcd for C₃₃H₂₄TbO₁₂ (771.46): C, 51.38; H, 3.14%. Found: C, 51.45; H, 3.20%.

 $Dy(L^1)_{1.5}(H_2O)_2 \cdot H_2O$ (7): The procedure is similar to the synthesis of 1 except $Pr(NO_3)_3 \cdot 6H_2O$ was replaced by $Dy(NO_3)_3 \cdot 6H_2O$ (45.6 mg, 0.1 mmol). Colorless block crystals of 7 were obtained in a yield of 40% based on Dy. Elemental Anal. Calcd for $C_{33}H_{24}DyO_{12}$ (775.04): C, 51.14; H, 3.12%. Found: C, 51.25; H, 3.10%.

Sm(L²)(phen)(OH) (8): The procedure is similar to the synthesis of 10 except Tb(NO₃)₃·6H₂O was replaced by Sm(NO₃)₃·6H₂O (44.4 mg, 0.1 mmol). Light-yellow prismatic crystals of 8 were obtained in a yield of 43% based on Sm. Elemental Anal. Calcd for $C_{34}H_{21}SmN_2O_7$ (719.90): C, 56.73; H, 2.94; N, 3.89%. Found: C, 56.60; H, 2.90; N, 3.83%.

Eu(L^2)(**phen**)(**OH**) (**9**): The procedure is similar to the synthesis of **10** except Tb(NO₃)₃·6H₂O was replaced by Eu(NO₃)₃·6H₂O (44.6 mg, 0.1 mmol). Colorless prismatic crystals of **9** were obtained in a yield of 48% based on Eu. Elemental Anal. Calcd for C₃₄H₂₁EuN₂O₇ (721.50): C, 56.60; H, 2.93; N, 3.88%. Found: C, 56.78; H, 2.90; N, 3.83%.

Dy(L^2)(**phen**)(**OH**) (**11**): The procedure is similar to the synthesis of **10** except Tb(NO₃)₃·6H₂O was replaced by Dy(NO₃)₃·6H₂O (45.6 mg, 0.1 mmol). Colorless prismatic crystals of **11** were obtained in a yield of 58% based on Dy. Elemental Anal. Calcd for C₃₄H₂₁DyN₂O₇ (732.03): C, 55.78; H, 2.89; N, 3.83%. Found: C, 55.83; H, 2.91; N, 3.80%. IR bands (KBr pellet, cm⁻¹): 3446 (s), 3059 (w), 1666 (s), 1594 (s), 1481 (m), 1447 (m), 1401 (s), 1340 (m), 1312 (w), 1256 (s), 1178 (s), 1140 (w), 1102 (w), 1020 (w), 951 (w), 926 (w), 892 (w), 806 (w), 767 (w), 723 (w), 625 (w), 572 (w), 493(w).

Er(L^2)(**phen**)(**OH**) (12): The procedure is similar to the synthesis of 10 except that Tb(NO₃)₃·6H₂O was replaced by Er(NO₃)₃·6H₂O (46.1 mg, 0.1 mmol). Pink prismatic crystals of 12 were obtained in a yield of 43% based on Er. Elemental Anal. Calcd for C₃₄H₂₁ErN₂O₇ (736.79): C, 55.42; H, 2.87; N, 3.80%. Found: C, 55.49; H, 2.83; N, 3.84%. IR bands (KBr pellet, cm⁻¹): 3430 (s), 3073 (w), 1669 (s), 1589 (s), 1555 (m), 1518 (w), 1484 (m), 1394 (s), 1313 (w), 1254 (m), 1177 (w), 1139 (w), 1101 (w), 1043 (w), 920 (w), 892 (w), 844 (m), 776 (m), 725(m), 609(w), 498(w), 431(w).

Yb(L^2)(**phen**)(**OH**) (**13**): The procedure is similar to the synthesis of **10** except Tb(NO₃)₃·6H₂O was replaced by Yb(NO₃)₃·5H₂O (44.9 mg, 0.1 mmol). Colorless prismatic crystals of **13** were obtained in a yield of 50% based on Yb. Elemental Anal. Calcd for C₃₄H₂₁YbN₂O₇ (742.57): C, 54.99; H, 2.85; N, 3.77%. Found: C, 55.03; H, 2.82; N, 3.81%. IR bands (KBr pellet, cm⁻¹): 3445 (s), 3060 (w), 1664 (s), 1596 (m), 1532 (w), 1481 (w), 1447 (m), 1405 (s), 1340 (m), 1257 (m), 1179 (w), 1073 (w), 1044 (w), 1021 (w), 1001(w), 927 (w), 894 (w), 837 (w), 807(m), 767 (m), 691(m), 524(w), 495(w).

 $Er(L^{1})_{0.5}(L^{2})(H_{2}O)_{2}$ (14): The procedure is similar to the synthesis of 15 except Ho(NO₃)₃·5H₂O was replaced by $Er(NO_{3})_{3}$ ·6H₂O (46.1 mg, 0.1 mmol). Pink block crystals of 14 were obtained in a yield of 62% based on Er. Elemental Anal. Calcd for C₃₃H₂₂ErO₁₁ (761.77): C, 52.03; H, 2.91%. Found: C, 52.08; H, 2.88%. IR bands (KBr pellet, cm⁻¹): 3435 (m), 3059 (w), 1664 (s), 1595 (s), 1481 (m), 1447 (m), 1404 (s), 1340 (m), 1257 (s), 1179 (w), 1154 (w), 1043 (w), 952 (w), 927 (w), 894 (w), 807 (m), 767 (w), 738 (w), 641 (w), 626 (w), 525(w), 493(w).

Due to bad quality of crystals, we can not collect the single-crystal XRD data of 7 (Dy(III), 8 (Sm(III)) and 9 (Eu(III)). The structure of compounds 7–9 was determined by powder XRD measurement. According to the powder XRD measurements, compounds 1–7 are isostructural and compounds 8–13 are isostructural.

Figure S1 The alternately arranged right- and left-handed chains are bridged by μ_2 –OH groups leading to an achiral 2D monolayer in **10**.

Figure S2 The red and black dotted lines represent C18–H18 $\cdots \pi$ and $\pi \cdots \pi$ interactions in **10**, respectively. Different layers are high-lighted with different colors.

Figure S3 The black and red dotted lines represent C31–H31…O6 and $\pi \dots \pi$ interactions in **15**, respectively.

Figure S4 Solid-state excitation and emission spectra of free ligands H_2L^1 and H_2L^2 at room temperature.

Figure S5 Typical fluorescence decay curves (black) observed for **3–4** and **6–11** in the solid state at room temperature, and red lines are the corresponding monoexponential fits.

Magnetic Property

The variable-temperature magnetic susceptibility of compound **5** was measured with a Quantum Design MPMS-XL superconducting quantum interference device (SQUID) magnetometer in the temperature range of 2–300 K at a field of 1 kOe, and diamagnetic corrections were made using Pascal's constants. The result is depicted in Figure 6 as $\chi_{M}T$ versus T curve (χ_{M} being the molar paramagnetic susceptibility). At 300 K, $\chi_{M}T$ for **5** is 16.45 cm³ K mol⁻¹ close to the expected value of 15.75 cm³ K mol⁻¹ for two uncoupled free Gd(III) (S = 7/2, L = 0, ${}^{8}S_{7/2}$, g = 2.0, C = 7.875 cm³ K mol⁻¹) ions. $\chi_{M}T$ remains almost constant at a value of ~16.11 cm³ K mol⁻¹ as the temperature decreases to ~11 K, where the value starts to steadily drop to a value of 15.58 cm³ K mol⁻¹ at 2.0 K. This behavior is indicative of weak antiferromagnetic exchange interaction between the Gd(III) ions in the molecule. A fit of the Curie–Weiss law $\chi = C / (T - \theta)$ (Figure S6) between 2–300 K for **5** in a 1000 Oe applied field yields C = 16.37 cm³ K mol⁻¹ and $\theta = -0.16$ K, suggesting an overall antiferromagnetic interaction among the Gd(III) ions. An attempt was made to fit the magnetic data to an isotropic exchange expression for a binuclear S = 7/2 model. The equation (1) deduced from spin Hamiltonian, $H = -JS_{Gd1}S_{Gd2}$, is employed to simulation the magnetic susceptibility of the binuclear system.¹

$$\chi_{M}T = \frac{2Ng^{2}\beta^{2}}{k} \frac{\left[e^{J/kT} + 5e^{3J/kT} + 14e^{6J/kT} + 30e^{10J/kT} + 55e^{15J/kT} + 91e^{21J/kT} + 140e^{28J/kT}\right]}{\left[1 + 3e^{J/kT} + 5e^{3J/kT} + 7e^{6J/kT} + 9e^{10J/kT} + 11e^{15J/kT} + 13e^{21J/kT} + 15e^{28J/kT}\right]}$$
(1)

In this expression, J denotes the exchange parameter between Gd(III) ions and N, g, β and k have their usual meanings. The best fitting of the susceptibility data in the temperature range 2–300 K gives J = -0.014 m⁻¹, g = 2.04. The small negative value of J further indicate that the presence of antiferromagnetic interactions among Gd(III) ions.

Figure S6 Temperature dependence of $\chi_M T$ (open circles) at 1000 Oe and χ_M^{-1} (squares) for **5**. Solid red line is the best fit obtained with the model as described in the text.

20 Figure S7 PXRD patterns based on the X-ray single crystal diffraction of **1** and the experimental samples of **1–7**, respectively.

Figure S8 PXRD patterns based on the X-ray single crystal diffraction of 10 and the experimental samples of 8–13, respectively.

EXAMPLE 1 20 20 Figure S9 PXRD patterns based on the X-ray single crystal diffraction of 14 and the experimental samples of 14–15, respectively.

Figure S10 TGA curves of **1** and **3** under N_2 atmosphere (5 °C min⁻¹).

Figure S11 TGA curves of 10 and 11 under N_2 atmosphere (5 °C min⁻¹).

Figure S12 TGA curves of 14 and 15 under N_2 atmosphere (5 °C min⁻¹).

Table S1. Crystal data and structure refinement parameters for 2–5, 7–9 and 10.

Complexes	2-Nd	3-Sm	4-Eu	5-Gd	6-Tb
Formula	C ₃₃ H ₂₄ NdO ₁₂	$C_{33}H_{24}SmO_{12}$	$C_{33}H_{24}EuO_{12} \\$	$C_{33}H_{24}GdO_{12}$	$C_{33}H_{24}O_{12}Tb$
Formula weight	756.76	762.87	764.48	769.77	771.44
Space group	$P\overline{1}$	Pī	$P\overline{1}$	Pī	$P\overline{1}$
a/Å	10.4475(11)	10.4130(11)	10.3979(6)	10.4002(6)	10.3248(19)
b/Å	11.5142(6)	11.4804(18)	11.4388(6)	11.4239(6)	11.3302(18)
c/Å	14.0367(16)	14.1232(19)	14.1007(8)	14.1035(8)	14.0870(3)
$\alpha/^{\circ}$	102.313(7)	102.540(6)	102.635(5)	102.780(1)	102.938(14)
$eta/^{\circ}$	110.938(10)	111.188(1)	111.321(5)	111.354(1)	111.170(17)
γ/°	100.587(6)	100.429(3)	100.381(5)	100.275(1)	100.561(14)
$V/\text{\AA}^3$	1476.9(2)	1472.9(3)	1460.95(14)	1458.80(14)	1433.0(5)
Ζ	2	2	2	2	2
μ/mm^{-1}	1.826	2.062	2.216	2.342	2.538
<i>F</i> (000)	756	760	762	764	766
$R_{\rm int}$	0.0516	0.0301	0.0349	0.0180	0.0358
GOF	1.033	1.082	1.030	1.041	0.990
$R_1^{a}, w R_2^{b} [I > 2\sigma(I)]$	0.0414, 0.0878	0.0329, 0.0873	0.0360, 0.0658	0.0280, 0.0669	0.0331, 0.0693
R_1^{a} , w R_2^{b} (all data)	0.0511, 0.0931	0.0393, 0.1026	0.0467, 0.0702	0.0308, 0.0687	0.0387, 0.0752

Complexes	7-Dy	8-Er	9-Yb	10-Er
Formula	$C_{34}H_{20}DyN_2O_7$	$C_{34}H_{21}ErN_2O_7$	$C_{34}H_{21}YbN_2O_7\\$	$C_{33}H_{22}ErO_{11}$
Formula weight	732.02	736.79	742.57	761.77
Space group	<i>P</i> 2 ₁ /c	$P2_{1}/c$	$P2_{1}/c$	Pī
a/Å	11.9684(6)	12.0185(4)	12.0745(18)	10.1324(8)
<i>b</i> /Å	12.6499(4)	12.6199(5)	12.584(2)	10.1905(9)
c/Å	19.6347(17)	19.5860(8)	19.537(2)	15.5442(10)
$\alpha/^{\circ}$	90	90	90	96.333(2)

$eta/^{\circ}$	108.000(6)	108.006(3)	108.000(7)	97.155(3)	
$\gamma/^{\circ}$	90	90	90	114.009(3)	
$V/\text{\AA}^3$	2827.2(3)	2825.16(19)	2823.3(7)	1431.59(19)	
Ζ	4	4	4	2	
μ/mm^{-1}	2.698	3.026	3.368	2.997	
<i>F</i> (000)	1440	1452	1460	752	
<i>R</i> _{int}	0.0340	0.0522	0.0693	0.0515	
GOF	1.038	0.900	1.076	1.109	
$R_1^{a}, wR_2^{b} [I > 2\sigma(I)]$	0.0349, 0.0706	0.0327, 0.0476	0.0422, 0.0748	0.0602, 0.1755	
R_1^a , w R_2^b (all data)	0.0498, 0.0755	0.0494, 0.0519	0.0618, 0.0827	0.0662, 0.1956	
$a_{\mathbf{D}} = \sum \mathbf{E} - \mathbf{E}_{\mathbf{c}} / \sum \mathbf{E} $	$b_{\rm res} \mathbf{D} = \sum \left[\frac{1}{2} - \frac{1}{2} \right] \mathbf{E} \mathbf{e}^2$	$2^{2} \sqrt{2} \sqrt{\sum \left[\frac{2}{2} + \frac{2}{2} \right]^{1/2}}$			•

 ${}^{a}R_{I} = \sum ||F_{0}| - |Fc|| / \sum |F_{0}|. {}^{b}wR_{2} = \sum [w(\overline{F_{0}^{2} - Fc^{2}})^{2}] / \sum [w(\overline{F_{0}^{2}})^{2}]^{1/2}$

Table S2. The Ln…Ln distances (Å) and the average bonds length (Å) Ln–O and Ln–N of complexes 1–6 and 10–15.

	1-6							
Complexes	1-Pr	2-Nd	3-Sm	4-Eu	5-Gd	6-Tb		
Ln…Ln	4.0611(8)	4.0326(7)	4.0136(6)	3.9903(4)	3.9804(3)	3.9597(12)		
Ln–O	2.5262	2.5067	2.4840	2.4687	2.4593	2.4324		
		10-	14-	-15				
Complexes	10-Tb	11-Dy	12-Er	13-Yb	14-Er	15-Ho		
Ln…Ln	3.7009(3)	3.6758(3)	3.6435(5)	3.6073(6)	4.1971(5)	4.1902(4)		
Ln–O	2.3858	2.3692	2.3545	2.3368	2.3636	2.3647		
Ln–N	2.567	2.544	2.527	2.500				

Table S3. Hydrogen-bonding geometry parameters (Å, °) for Complexes 1–6 and 10–15.

D-H···A $d(D-H)(Å) d(H···A)(Å) d(D···A)(Å) \angle(I)$	(DHA)(°) Symmetry code
--	------------------------

Complex 1					
O1W-H1WA…O3W	0.85	2.05	2.865(7)	160	
O2W-H2WA····O9	0.85	2.20	2.890(5)	138	2- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>
O3W-H3WA····O2	0.85	2.07	2.842(7)	151	-
O3W-H3WB····O7	0.85	2.34	3.071(6)	144	
C14-H14O3	0.93	2.48	3.278(5)	143	
C25-H25O2W	0.93	2.49	3.334(5)	151	
C30-H30O3W	0.93	2.58	3.356(8)	142	<i>x</i> , <i>y</i> , -1+ <i>z</i>
Complex 2					
O1W-H1WB…O6	0.85	2.14	2.904(6)	149	2- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>
O2W-H2WA···O3W	0.85	2.06	2.881(8)	163	1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>
O3W-H3WA····O2	0.85	2.06	2.839(7)	152	1-x, 1-y, 1-z
O3W-H3WB····O4	0.86	2.40	3.075(6)	136	
C14-H14O1W	0.93	2.46	3.310(6)	152	
C21-H21O3W	0.93	2.56	3.336(9)	142	1- <i>x</i> , 1- <i>y</i> , - <i>z</i>
C25-H25…O3	0.93	2.48	3.280(7)	144	-
Complex 3					
O1W-H1WB…O6	0.86	2.23	2.928(7)	138	2- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>
O2W-H2WB····O3W	0.86	2.09	2.877(8)	152	
O3W-H3WA····O2	0.85	2.14	2.830(9)	137	
O3W-H3WB····O5	0.85	2.34	3.113(7)	150	1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>
C14-H14A…O1W	0.93	2.44	3.297(7)	154	
C21-H21AO3W	0.93	2.53	3.320(10)	143	x, y, -1+z
C25-H25A…O3	0.93	2.49	3.282(7)	143	
Complex 4					
O1W-H1WB…O3W	0.85	2.03	2.860(7)	167	1- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>
O2W-H2WA····O6	0.85	2.12	2.944(6)	164	2- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>
O3W-H3WA…O1	0.85	2.06	2.824(7)	149	1- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>
O3W-H3WB····O5	0.85	2.51	3.097(6)	126	<i>x</i> , 1+ <i>y</i> , <i>z</i>
C14-H14O2W	0.93	2.41	3.278(6)	155	
C21-H21O3W	0.93	2.52	3.314(8)	143	1- <i>x</i> , 2- <i>y</i> , - <i>z</i>
C25-H25…O3	0.93	2.48	3.266(7)	143	
Complex 5					
O1W-H1WA…O9	0.86	2.12	2.957(5)	163	2- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>
O2W-H2WA…O3W	0.85	2.17	2.856(7)	138	
O3W-H3WC…O1	0.86	2.06	2.824(7)	149	
O3W-H3WD…O7	0.85	2.34	3.109(6)	150	1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>
C14-H14…O3	0.93	2.47	3.264(5)	143	
C25-H25O1W	0.93	2.40	3.275(5)	156	
C32-H32…O3W	0.93	2.52	3.308(8)	143	<i>x</i> , <i>y</i> , -1+ <i>z</i>
Complex 6					
O1W-H1WA…O6	0.85	2.12	2.961(3)	146	1-x,-y,1-z
O2W-H2WB···O3W	0.85	2.17	2.854(6)	132	1-x,1-y,1-z
O3W-H3WC…O5	0.85	2.06	3.130(7)	149	1-x,1-y,1-z
O3W-H3WD····O8	0.85	2.34	2.804(8)	148	1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>

C14-H14…O9	0.93	2.47	3.244(5)	144	
C25-H25…O1W	0.93	2.40	3.231(4)	157	
C32-H32···O3W	0.93	2.52	3.284(6)	143	1-x,1-y,-z
Complex 10					
C21-H21···O3	0.93	2.47	3.322(9)	153	2- <i>x</i> ,-1/2+ <i>y</i> ,3/2- <i>z</i>
Complex 11					
C19-H19O5	0.93	2.47	3.324(8)	153	-1+ <i>x</i> , <i>y</i> , <i>z</i>
Complex 12					
C12-H12···O5	0.93	2.44	3.295(7)	153	2-x, 1/2+y, 3/2-z
Complex 13					
С20-Н20-Об	0.93	2.43	3.287(11)	153	1+ <i>x</i> , <i>y</i> , <i>z</i>
Complex 14					
С31-Н31…О5	0.93	2.61	3.3778(11)	140	<i>x</i> , <i>y</i> , -1+ <i>z</i>
Complex 15					
C31-H31O6	0.93	2.63	3.3762(86)	138	1-x, 1-y, -z

Table S4. X–H··· π Interactions in Complexes 1–6 and 10–15^c.

X–H··· π	$H \cdots C(g) (Å)$	X–H···C(g) (°)	$X \cdots C(g) (Å)$	Symmetry code
Complex 1				
C31-H31>Cg(2)	2.67	129	3.332(6)	2- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>
Complex 2				
C20-H20>Cg(2)	2.67	129	3.329(9)	2- x, 2- y, 1- z
Complex 3				
C20-H20A>Cg(2)	2.66	128	3.316(9)	2- x, 2- y, 1- z
Complex 4				
C20-H20>Cg(2)	2.66	129	3.319(8)	2- x, 2- y, 1- z
Complex 5				
C31-H31>Cg(2)	2.65	128	3.305(7)	2- x, 2- y, 1- z
Complex 6				
C18-H18>Cg(4)	2.91	136	3.637(6)	2- x, 1- y, 2- z
Complex 7				
C22-H22>Cg(5)	2.91	136	3.642(6)	-1+x, $1/2-y$, $-1/2+z$
Complex 8				
C15-H15>Cg(5)	2.92	137	3.658(6)	2- x, 1- y, 2- z
Complex 9				
C17-H17>Cg(5)	2.96	135	3.678(8)	1+x, $3/2-y$, $1/2+z$
Complex 10				
O2W-H2WA>Cg(4)	2.51	161	3.330(8)	<i>x</i> , <i>y</i> , <i>z</i>
C12-H12>Cg(6)	2.76	150	3.595(10)	2- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>
C21-H21>Cg(3)	2.80	135	3.522(13)	-1+x, y, z
Complex 11				

O2W-H2WB>Cg(3) 2.54	156	3.350(5)	x, y, z	7
C12-H12>Cg(4)	2.80	136	3.526(8)	- x, 1- y,	1- <i>z</i>
C19-H19>Cg(6)	2.79	150	3.619(6)	-1+x, -1-	⊦ y, z
^c For 1: Cg(2): C6>C72	>C8>C9>C10>C11				•
For 2: Cg(2): C6>C7>	C8>C9>C10>C11				
For 3 : Cg(2): C6>C7>	C8>C9>C10>C11				
For 4: Cg(2): C6>C7>	C8>C9>C10>C11				
For 5: Cg(2): C6>C7>	C8>C9>C10>C11				
For 10: Cg(4): C6>C7	>C8>C9>C10>C11				
For 11: Cg(5): C10>C	11>C12>C13>C14>C15				
For 12: Cg(5): C17>C	18>C19>C20>C21>C22				
For 13: Cg(5): C9>C1	0>C11>C12>C13>C14				
For 14 : Cg(4):	C17>C18>C19>C20>C21>C22;	Cg(6):	C28>C29>C30>C3	1>C32>C33;	Cg(3):
C10>C11>C12>C13>	C14>C15				
For 15 : Cg(3):	C10>C11>C12>C13>C14>C15;	Cg(4):	C17>C18>C19>C20)>C21>C22;	Cg(6):
C28>C29>C30>C31>	·C32>C33				

Table S5. $\pi \cdots \pi$ Interactions in Complexes 10–15^d.

Two rings	Symmetry code	Centroid-to- centroid distance (Å)	Dihedral angel (°)	Perpendicular distance of Cg(I) on ring J (Å)	Perpendicular distance of Cg(J) on ring I (Å)
Complex 10					
Cg(5)>Cg(5)	2- x, - y, 2- z	3.935(4)	0	-3.302(3)	-3.302(3)
Cg(6)>Cg(6)	1- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>	3.646(4)	0	-3.490(3)	-3.490(3)
Complex 11					
Cg(6)>Cg(6)	- x, 1- y, 1- z	3.919(3)	0	3.309(2)	3.310(2)
Cg(7)>Cg(7)	1- <i>x</i> , - <i>y</i> , 1- <i>z</i>	3.610(3)	0	-3.457(3)	-3.457(3)
Complex 12					
Cg(4)>Cg(4)	2- x, 2- y, 2- z	3.881(3)	0	-3.297(2)	-3.296(2)
Cg(6)>Cg(6)	1- <i>x</i> , - <i>y</i> , 1- <i>z</i>	3.6211(3)	0	-3.447(2)	-3.447(2)
Complex 13					
Cg(6)>Cg(6)	2- x, 1- y, 1- z	3.840(5)	0	-3.272(3)	-3.272(3)
Cg(7)>Cg(7)	1- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>	3.613(7)	0	3.442(3)	3.442(3)
Complex 14					
Cg(4)>Cg(4)	1- <i>x</i> , 2- <i>y</i> , 2- <i>z</i>	4.088(6)	0	3.740(4)	3.739(4)
Complex 15					
Cg(3)>Cg(3)	1- <i>x</i> , 2- <i>y</i> , 2- <i>z</i>	4.082(4)	0	3.731(3)	3.731(3)

^dFor **10**: Cg(5): C17>C18>C19>C20>C21>C22; Cg(6): C26>C27>C28>C29>C30>C31 For **11**: Cg(6): C17>C18>C19>C20>C21>C22; Cg(7): C26>C27>C28>C29>C30>C31

For **12**: Cg(4): C10>C11>C12>C13>C14>C15; Cg(6): C26>C27>C28>C29>C33>C34 For **13**: Cg(6): C16>C17>C18>C19>C20>C21; Cg(7): C26>C27>C28>C29>C33>C34 For **14**: Cg(4): C17>C18>C19>C20>C21>C22 For **15**: Cg(3): C10>C11>C12>C13>C14>C15

Complexe s	$\lambda_{\rm ex} ({\rm nm})$	τ (μs)	Φ_{overall} (%)	Maximum emission wavelengths
3 (Sm)	340	11.5	0.3	562 (${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$), 596 (${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$), 642 (${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$), 703 (${}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}$)
4 (Eu)	350	332	17.2	578 (${}^{5}D_{0} \rightarrow {}^{7}F_{0}$), 590 (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$), 613 (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$), 651 (${}^{5}D_{0} \rightarrow {}^{7}F_{3}$), 696 (${}^{5}D_{0} \rightarrow {}^{7}F_{4}$)
6 (Tb)	290	675	26.3	488 (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$), 545 (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$), 586 (${}^{5}D_{4} \rightarrow {}^{7}F_{4}$), 622 (${}^{5}D_{4} \rightarrow {}^{7}F_{3}$), 652 (${}^{5}D_{4} \rightarrow {}^{7}F_{2}$), 668 (${}^{5}D_{4} \rightarrow {}^{7}F_{1}$), 680 (${}^{5}D_{4} \rightarrow {}^{7}F_{0}$)
7 (Dy)	290	1.27	0.9	479 (${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$), 574 (${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$), 662 (${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$), 751 (${}^{4}F_{9/2} \rightarrow {}^{6}H_{9/2}$)
8 (Sm)	290	49.2	5.3	563 (${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$), 598 (${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$), 645 (${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$), 704 (${}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}$)
9 (Eu)	290	981	55.4	579 (⁵ D ₀ \rightarrow ⁷ F ₀), 592 (⁵ D ₀ \rightarrow ⁷ F ₁), 615 (⁵ D ₀ \rightarrow ⁷ F ₂), 651 (⁵ D ₀ \rightarrow ⁷ F ₃), 698 (⁵ D ₀ \rightarrow ⁷ F ₄)
10 (Tb)	365	762	40.2	489 (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$), 548 (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$), 585 (${}^{5}D_{4} \rightarrow {}^{7}F_{4}$), 621 (${}^{5}D_{4} \rightarrow {}^{7}F_{3}$), 651 (${}^{5}D_{4} \rightarrow {}^{7}F_{2}$), 669 (${}^{5}D_{4} \rightarrow {}^{7}F_{1}$), 680 (${}^{5}D_{4} \rightarrow {}^{7}F_{0}$)
11 (Dy)	365	10.4	2.0	479 (${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$), 574 (${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$), 662 (${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$), 750 (${}^{4}F_{9/2} \rightarrow {}^{6}H_{9/2}$)

Table S6. Maximum emission wavelengths, λ_{ex} (nm), τ (µs) and $\Phi_{overall}$ (%) of **3**, **4** and **6–11**.

Table S7. Selected Bond distances (Å) and Angles (°) of 1–6 and 10–15^e.

1					
Pr(1)-O(8)	2.440(2)	Pr(1)-O(2)	2.500(2)	Pr(1)-O(2W)	2.548(3)
Pr(1)-O(4)	2.457(2)	Pr(1)-O(7)	2.511(2)	Pr(1)-O(1W)	2.581(3)
Pr(1)-O(5)	2.472(2)	Pr(1)-O(1)	2.517(2)	Pr(1)-O(8)#1	2.710(2)
O(8)-Pr(1)-O(4)	74.96(8)	O(5)-Pr(1)-O(1)	135.49(9)	O(2)-Pr(1)-O(1W)	72.93(10)

O(8)-Pr(1)-O(5)	74.49(8)	O(2)-Pr(1)-O(1)	52.04(8)	O(7)-Pr(1)-O(1W)	69.45(9)
O(4)-Pr(1)-O(5)	136.31(8)	O(7)-Pr(1)-O(1)	125.82(8)	O(1)-Pr(1)-O(1W)	109.84(10)
O(8)-Pr(1)-O(2)	139.20(8)	O(8)-Pr(1)-O(2W)	95.50(9)	O(2W)-Pr(1)-O(1W)	65.91(10)
O(4)-Pr(1)-O(2)	81.02(9)	O(4)-Pr(1)-O(2W)	139.51(9)	O(8)-Pr(1)-O(8)#1	76.03(8)
O(5)-Pr(1)-O(2)	140.87(9)	O(5)-Pr(1)-O(2W)	73.99(9)	O(4)-Pr(1)-O(8)#1	68.76(8)
O(8)-Pr(1)-O(7)	124.95(8)	O(2)-Pr(1)-O(2W)	81.86(10)	O(5)-Pr(1)-O(8)#1	74.06(8)
O(4)-Pr(1)-O(7)	76.65(9)	O(7)-Pr(1)-O(2W)	134.86(9)	O(2)-Pr(1)-O(8)#1	124.60(8)
O(5)-Pr(1)-O(7)	96.45(9)	O(1)-Pr(1)-O(2W)	66.46(9)	O(7)-Pr(1)-O(8)#1	49.84(8)
O(2)-Pr(1)-O(7)	79.20(8)	O(8)-Pr(1)-O(1W)	142.53(9)	O(1)-Pr(1)-O(8)#1	142.42(8)
O(8)-Pr(1)-O(1)	89.43(8)	O(4)-Pr(1)-O(1W)	140.25(9)	O(2W)-Pr(1)-O(8)#1	148.06(8)
O(4)-Pr(1)-O(1)	74.07(9)	O(5)-Pr(1)-O(1W)	69.26(10)	O(1W)-Pr(1)-O(8)#1	102.24(9)
2					
Nd(1)-O(5)	2.414(3)	Nd(1)-O(2)	2.476(3)	Nd(1)-O(1W)	2.529(3)
Nd(1)-O(8)	2.437(3)	Nd(1)-O(4)#1	2.491(3)	Nd(1)-O(2W)	2.557(3)
Nd(1)-O(7)	2.453(3)	Nd(1)-O(1)	2.502(3)	Nd(1)-O(5)#1	2.701(3)
O(5)-Nd(1)-O(8)	75.44(10)	O(7)-Nd(1)-O(1)	135.34(11)	O(2)-Nd(1)-O(2W)	73.14(11)
O(5)-Nd(1)-O(7)	74.32(10)	O(2)-Nd(1)-O(1)	52.32(10)	O(4)#1-Nd(1)-O(2W)	69.75(11)
O(8)-Nd(1)-O(7)	136.34(10)	O(4)#1-Nd(1)-O(1)	126.20(10)	O(1)-Nd(1)-O(2W)	109.89(12)
O(5)-Nd(1)-O(2)	139.43(11)	O(5)-Nd(1)-O(1W)	94.93(10)	O(1W)-Nd(1)-O(2W)	65.91(12)
O(8)-Nd(1)-O(2)	80.96(11)	O(8)-Nd(1)-O(1W)	139.51(12)	O(5)-Nd(1)-O(5)#1	76.07(10)
O(7)-Nd(1)-O(2)	140.79(11)	O(7)-Nd(1)-O(1W)	74.01(11)	O(8)-Nd(1)-O(5)#1	68.42(10)
O(5)-Nd(1)-O(4)#1	125.06(10)	O(2)-Nd(1)-O(1W)	82.08(11)	O(7)-Nd(1)-O(5)#1	74.22(10)
O(8)-Nd(1)-O(4)#1	76.51(11)	O(4)#1-Nd(1)-O(1W)	135.17(11)	O(2)-Nd(1)-O(5)#1	124.46(10)
O(7)-Nd(1)-O(4)#1	96.21(11)	O(1)-Nd(1)-O(1W)	66.20(12)	O(4)#1-Nd(1)-O(5)#1	49.78(9)
O(2)-Nd(1)-O(4)#1	79.25(11)	O(5)-Nd(1)-O(2W)	141.87(11)	O(1)-Nd(1)-O(5)#1	142.29(11)
O(5)-Nd(1)-O(1)	89.33(10)	O(8)-Nd(1)-O(2W)	140.45(11)	O(1W)-Nd(1)-O(5)#1	148.23(10)
O(8)-Nd(1)-O(1)	74.33(11)	O(7)-Nd(1)-O(2W)	68.88(11)	O(2W)-Nd(1)-O(5)#1	102.57(11)
3					
Sm(1)-O(4)	2.385(3)	Sm(1)-O(5)#1	2.451(3)	Sm(1)-O(1W)	2.500(3)
Sm(1)-O(8)	2.420(3)	Sm(1)-O(2)	2.455(4)	Sm(1)-O(2W)	2.537(4)
Sm(1)-O(7)	2.420(3)	Sm(1)-O(1)	2.488(3)	Sm(1)-O(4)#1	2.700(3)

O(4)-Sm(1)-O(8)	75.39(11)	O(7)-Sm(1)-O(1)	135.47(12)	O(5)#1-Sm(1)-O(2W)	69.38(12)
O(4)-Sm(1)-O(7)	74.94(11)	O(5)#1-Sm(1)-O(1)	126.83(12)	O(2)-Sm(1)-O(2W)	72.80(13)
O(8)-Sm(1)-O(7)	136.64(11)	O(2)-Sm(1)-O(1)	52.90(11)	O(1)-Sm(1)-O(2W)	110.18(12)
O(4)-Sm(1)-O(5)#1	125.45(11)	O(4)-Sm(1)-O(1W)	94.46(12)	O(1W)-Sm(1)-O(2W)	66.18(12)
O(8)-Sm(1)-O(5)#1	77.09(11)	O(8)-Sm(1)-O(1W)	139.12(12)	O(4)-Sm(1)-O(4)#1	75.94(11)
O(7)-Sm(1)-O(5)#1	95.50(12)	O(7)-Sm(1)-O(1W)	74.10(12)	O(8)-Sm(1)-O(4)#1	69.02(10)
O(4)-Sm(1)-O(2)	139.17(11)	O(5)#1-Sm(1)-O(1W)	135.15(12)	O(7)-Sm(1)-O(4)#1	73.59(11)
O(8)-Sm(1)-O(2)	80.86(12)	O(2)-Sm(1)-O(1W)	82.27(13)	O(5)#1-Sm(1)-O(4)#1	50.33(11)
O(7)-Sm(1)-O(2)	140.48(12)	O(1)-Sm(1)-O(1W)	66.26(12)	O(2)-Sm(1)-O(4)#1	125.05(11)
O(5)#1-Sm(1)-O(2)	79.34(12)	O(4)-Sm(1)-O(2W)	142.28(12)	O(1)-Sm(1)-O(4)#1	142.23(11)
O(4)-Sm(1)-O(1)	88.42(11)	O(8)-Sm(1)-O(2W)	140.33(12)	O(1W)-Sm(1)-O(4)#1	147.67(11)
O(8)-Sm(1)-O(1)	73.86(11)	O(7)-Sm(1)-O(2W)	68.82(13)	O(2W)-Sm(1)-O(4)#1	102.78(12)
4					
Eu(1)-O(4)	2.367(2)	Eu(1)-O(5)#1	2.435(3)	Eu(1)-O(2W)	2.481(3)
Eu(1)-O(7)	2.403(3)	Eu(1)-O(1)	2.435(3)	Eu(1)-O(1W)	2.519(3)
Eu(1)-O(8)#1	2.403(3)	Eu(1)-O(2)	2.480(3)	Eu(1)-O(4)#1	2.695(3)
O(4)-Eu(1)-O(7)	75.65(9)	O(8)#1-Eu(1)-O(2)	135.58(10)	O(5)#1-Eu(1)-O(1W)	69.67(10)
O(4)-Eu(1)-O(8)#1	75.16(9)	O(5)#1-Eu(1)-O(2)	127.03(10)	O(1)-Eu(1)-O(1W)	72.75(10)
O(7)-Eu(1)-O(8)#1	136.68(10)	O(1)-Eu(1)-O(2)	53.08(9)	O(2)-Eu(1)-O(1W)	109.90(11)
O(4)-Eu(1)-O(5)#1	125.72(10)	O(4)-Eu(1)-O(2W)	94.02(10)	O(2W)-Eu(1)-O(1W)	66.10(10)
O(7)-Eu(1)-O(5)#1	77.01(10)	O(7)-Eu(1)-O(2W)	138.96(11)	O(4)-Eu(1)-O(4)#1	76.15(10)
O(8)#1-Eu(1)-O(5)#1	95.18(10)	O(8)#1-Eu(1)-O(2W)	74.38(11)	O(7)-Eu(1)-O(4)#1	68.97(9)
O(4)-Eu(1)-O(1)	139.00(10)	O(5)#1-Eu(1)-O(2W)	135.38(10)	O(8)#1-Eu(1)-O(4)#1	73.44(9)
O(7)-Eu(1)-O(1)	80.61(10)	O(1)-Eu(1)-O(2W)	82.45(10)	O(5)#1-Eu(1)-O(4)#1	50.37(9)
O(8)#1-Eu(1)-O(1)	140.50(10)	O(2)-Eu(1)-O(2W)	65.97(11)	O(1)-Eu(1)-O(4)#1	124.95(9)
O(5)#1-Eu(1)-O(1)	79.27(10)	O(4)-Eu(1)-O(1W)	142.20(10)	O(2)-Eu(1)-O(4)#1	142.23(9)
O(4)-Eu(1)-O(2)	88.10(10)	O(7)-Eu(1)-O(1W)	140.35(9)	O(2W)-Eu(1)-O(4)#1	147.78(10)
O(7)-Eu(1)-O(2)	73.96(10)	O(8)#1-Eu(1)-O(1W)	68.75(10)	O(1W)-Eu(1)-O(4)#1	103.20(10)
5					
Gd(1)-O(8)	2.354(2)	Gd(1)-O(7)#1	2.424(2)	Gd(1)-O(1W)	2.475(3)
Gd(1)-O(5)	2.388(2)	Gd(1)-O(1)	2.425(2)	Gd(1)-O(2W)	2.509(3)

Tb(1)-O(7)#1	2.252(3)	Tb(1)-O(1)	2.411(4)	Tb(1)-N(2)	2.560(4)
10					
O(1)-Tb(1)-O(7)	74.83(11)	O(5)#1-Tb(1)-O(2W)	70.55(11)	O(2W)-Tb(1)-O(4)#1	105.24(10)
O(4)-Tb(1)-O(7)	87.66(11)	O(2)#1-Tb(1)-O(2W)	69.19(12)	O(1W)-Tb(1)-O(4)#1	147.62(11)
O(5)#1-Tb(1)-O(8)	79.70(11)	O(1)-Tb(1)-O(2W)	140.63(11)	O(7)-Tb(1)-O(4)#1	142.34(10)
O(2)#1-Tb(1)-O(8)	140.58(10)	O(4)-Tb(1)-O(2W)	141.89(11)	O(8)-Tb(1)-O(4)#1	125.20(10)
O(1)-Tb(1)-O(8)	80.46(10)	O(7)-Tb(1)-O(1W)	65.17(12)	O(5)#1-Tb(1)-O(4)#1	50.70(9)
O(4)-Tb(1)-O(8)	138.91(10)	O(8)-Tb(1)-O(1W)	83.05(12)	O(2)#1-Tb(1)-O(4)#1	73.55(9)
O(2)#1-Tb(1)-O(5)#1	94.52(11)	O(5)#1-Tb(1)-O(1W)	135.78(11)	O(1)-Tb(1)-O(4)#1	68.47(9)
O(1)-Tb(1)-O(5)#1	77.23(10)	O(2)#1-Tb(1)-O(1W)	74.21(11)	O(4)-Tb(1)-O(4)#1	75.94(10)
O(4)-Tb(1)-O(5)#1	126.04(10)	O(1)-Tb(1)-O(1W)	138.96(11)	O(1W)-Tb(1)-O(2W)	65.44(11)
O(1)-Tb(1)-O(2)#1	136.67(10)	O(4)-Tb(1)-O(1W)	92.85(11)	O(7)-Tb(1)-O(2W)	108.38(12)
O(4)-Tb(1)-O(2)#1	75.03(10)	O(8)-Tb(1)-O(7)	53.50(10)	O(8)-Tb(1)-O(2W)	72.17(12)
O(4)-Tb(1)-O(1)	76.22(10)	O(5)#1-Tb(1)-O(7)	128.34(11)	O(2)#1-Tb(1)-O(7)	134.80(11)
Tb(1)-O(2)#1	2.366(3)	Tb(1)-O(7)	2.422(3)	Tb(1)-O(4)#1	2.696(3)
Tb(1)-O(1)	2.363(3)	Tb(1)-O(8)	2.398(3)	Tb(1)-O(2W)	2.488(3)
Tb(1)-O(4)	2.319(3)	Tb(1)-O(5)#1	2.379(3)	Tb(1)-O(1W)	2.461(3)
6					
O(5)-Gd(1)-O(2)	74.09(9)	O(4)#1-Gd(1)-O(2W)	68.81(9)	O(2W)-Gd(1)-O(8)#1	103.35(9)
O(8)-Gd(1)-O(2)	87.77(9)	O(5)-Gd(1)-O(2W)	140.16(9)	O(1W)-Gd(1)-O(8)#1	147.54(9)
O(7)#1-Gd(1)-O(1)	79.44(9)	O(8)-Gd(1)-O(2W)	142.17(9)	O(2)-Gd(1)-O(8)#1	142.26(9)
O(4)#1-Gd(1)-O(1)	140.50(9)	O(2)-Gd(1)-O(1W)	65.97(10)	O(1)-Gd(1)-O(8)#1	125.05(8)
O(5)-Gd(1)-O(1)	80.48(9)	O(1)-Gd(1)-O(1W)	82.66(10)	O(7)#1-Gd(1)-O(8)#1	50.44(8)
O(8)-Gd(1)-O(1)	138.91(9)	O(7)#1-Gd(1)-O(1W)	135.26(9)	O(4)#1-Gd(1)-O(8)#1	73.44(8)
O(4)#1-Gd(1)-O(7)#1	94.92(9)	O(4)#1-Gd(1)-O(1W)	74.16(9)	O(5)-Gd(1)-O(8)#1	68.97(8)
O(5)-Gd(1)-O(7)#1	77.16(9)	O(5)-Gd(1)-O(1W)	139.11(10)	O(8)-Gd(1)-O(8)#1	76.25(9)
O(8)-Gd(1)-O(7)#1	125.96(9)	O(8)-Gd(1)-O(1W)	93.67(9)	O(1W)-Gd(1)-O(2W)	66.09(10)
O(5)-Gd(1)-O(4)#1	136.81(8)	O(1)-Gd(1)-O(2)	53.29(9)	O(2)-Gd(1)-O(2W)	109.89(10)
O(8)-Gd(1)-O(4)#1	75.15(9)	O(7)#1-Gd(1)-O(2)	127.53(9)	O(1)-Gd(1)-O(2W)	72.69(10)
O(8)-Gd(1)-O(5)	75.94(8)	O(4)#1-Gd(1)-O(2)	135.32(9)	O(7)#1-Gd(1)-O(2W)	69.49(9)
Gd(1)-O(4)#1	2.395(2)	Gd(1)-O(2)	2.465(3)	Gd(1)-O(8)#1	2.699(3)

Tb(1)-O(7)	2.270(3)	Tb(1)-O(2)	2.465(4)	Tb(1)-N(1)	2.574(4)
Tb(1)-O(5)#2	2.400(4)	Tb(1)-O(4)#2	2.517(4)		
O(7)#1-Tb(1)-O(7)	70.13(14)	O(7)#1-Tb(1)-O(4)#2	82.91(12)	O(2)-Tb(1)-N(2)	80.37(13)
O(7)#1-Tb(1)-O(5)#2	135.28(13)	O(7)-Tb(1)-O(4)#2	147.70(12)	O(4)#2-Tb(1)-N(2)	113.05(14)
O(7)-Tb(1)-O(5)#2	153.76(13)	O(5)#2-Tb(1)-O(4)#2	53.15(13)	O(7)#1-Tb(1)-N(1)	85.69(15)
O(7)#1-Tb(1)-O(1)	85.26(14)	O(1)-Tb(1)-O(4)#2	86.42(14)	O(7)-Tb(1)-N(1)	84.99(15)
O(7)-Tb(1)-O(1)	108.03(15)	O(2)-Tb(1)-O(4)#2	125.24(13)	O(5)#2-Tb(1)-N(1)	90.17(16)
O(5)#2-Tb(1)-O(1)	84.17(17)	O(7)#1-Tb(1)-N(2)	138.76(13)	O(1)-Tb(1)-N(1)	160.47(15)
O(7)#1-Tb(1)-O(2)	122.51(13)	O(7)-Tb(1)-N(2)	79.36(13)	O(2)-Tb(1)-N(1)	144.36(14)
O(7)-Tb(1)-O(2)	85.26(13)	O(5)#2-Tb(1)-N(2)	75.35(15)	O(4)#2-Tb(1)-N(1)	75.31(15)
O(5)#2-Tb(1)-O(2)	83.78(14)	O(1)-Tb(1)-N(2)	131.42(14)	N(2)-Tb(1)-N(1)	64.15(15)
O(1)-Tb(1)-O(2)	53.60(12)				
11					
Dy(1)-O(7)	2.238(3)	Dy(1)-O(2)	2.395(3)	Dy(1)-N(2)	2.539(4)
Dy(1)-O(7)#1	2.254(3)	Dy(1)-O(1)	2.450(3)	Dy(1)-N(1)	2.549(4)
Dy(1)-O(3)	2.379(4)	Dy(1)-O(4)	2.499(4)		
O(7)-Dy(1)-O(7)#1	70.15(13)	O(7)-Dy(1)-O(4)	82.64(11)	O(1)-Dy(1)-N(2)	80.02(12)
O(7)-Dy(1)-O(3)	135.45(12)	O(7)#1-Dy(1)-O(4)	147.74(11)	O(4)-Dy(1)-N(2)	113.37(12)
O(7)#1-Dy(1)-O(3)	153.54(12)	O(3)-Dy(1)-O(4)	53.51(11)	O(7)-Dy(1)-N(1)	85.68(13)
O(7)-Dy(1)-O(2)	85.30(12)	O(2)-Dy(1)-O(4)	85.97(13)	O(7)#1-Dy(1)-N(1)	85.66(14)
O(7)#1-Dy(1)-O(2)	108.02(13)	O(1)-Dy(1)-O(4)	125.33(12)	O(3)-Dy(1)-N(1)	89.57(14)
O(3)-Dy(1)-O(2)	84.32(14)	O(7)-Dy(1)-N(2)	139.07(14)	O(2)-Dy(1)-N(1)	159.86(14)
O(7)-Dy(1)-O(1)	122.54(11)	O(7)#1-Dy(1)-N(2)	79.63(13)	O(1)-Dy(1)-N(1)	144.53(12)
O(7)#1-Dy(1)-O(1)	84.98(12)	O(3)-Dy(1)-N(2)	74.83(14)	O(4)-Dy(1)-N(1)	75.04(14)
O(3)-Dy(1)-O(1)	83.93(12)	O(2)-Dy(1)-N(2)	131.17(12)	N(2)-Dy(1)-N(1)	64.64(13)
O(2)-Dy(1)-O(1)	53.85(12)				
12					
Er(1)-O(7)#1	2 219(2)	$Fr(1) \cap (2)$	2.377(3)	Er(1)-N(1)	2.524(4)
	2.218(3)	EI(1)=O(2)	21077(0)		
Er(1)-O(7)	2.218(3) 2.250(3)	Er(1)-O(1)	2.433(3)	Er(1)-N(2)	2.529(4)
Er(1)-O(7) Er(1)-O(4)	2.218(3) 2.250(3) 2.365(3)	Er(1)-O(2) Er(1)-O(1) Er(1)-O(3)	2.433(3) 2.484(3)	Er(1)-N(2)	2.529(4)

O(7)#1-Er(1)-O(4)	135.25(12)	O(7)-Er(1)-O(3)	147.78(10)	O(3)-Er(1)-N(1)	114.62(12)
O(7)-Er(1)-O(4)	153.24(12)	O(4)-Er(1)-O(3)	54.23(11)	O(7)#1-Er(1)-N(2)	85.34(12)
O(7)#1-Er(1)-O(2)	85.12(11)	O(2)-Er(1)-O(3)	84.51(12)	O(7)-Er(1)-N(2)	85.87(12)
O(7)-Er(1)-O(2)	108.48(12)	O(1)-Er(1)-O(3)	124.86(11)	O(4)-Er(1)-N(2)	89.71(13)
O(4)-Er(1)-O(2)	83.97(13)	O(7)#1-Er(1)-N(1)	139.54(12)	O(2)-Er(1)-N(2)	158.95(13)
O(7)#1-Er(1)-O(1)	122.85(11)	O(7)-Er(1)-N(1)	79.49(12)	O(1)-Er(1)-N(2)	144.91(12)
O(7)-Er(1)-O(1)	85.01(11)	O(4)-Er(1)-N(1)	74.69(13)	O(3)-Er(1)-N(2)	75.56(13)
O(4)-Er(1)-O(1)	83.57(11)	O(2)-Er(1)-N(1)	131.10(12)	N(1)-Er(1)-N(2)	65.41(13)
O(2)-Er(1)-O(1)	54.27(11)				
13					
Yb(1)-O(7)#1	2.196(4)	Yb(1)-O(2)	2.353(4)	Yb(1)-N(1)	2.496(6)
Yb(1)-O(7)	2.229(4)	Yb(1)-O(1)	2.422(5)	Yb(1)-N(2)	2.504(5)
Yb(1)-O(3)	2.347(4)	Yb(1)-O(4)	2.474(5)		
O(7)#1-Yb(1)-O(7)	70.78(17)	O(7)#1-Yb(1)-O(4)	80.81(15)	O(1)-Yb(1)-N(1)	145.18(17)
O(7)#1-Yb(1)-O(3)	135.36(16)	O(7)-Yb(1)-O(4)	147.50(15)	O(4)-Yb(1)-N(1)	75.82(17)
O(7)-Yb(1)-O(3)	153.03(16)	O(3)-Yb(1)-O(4)	55.03(15)	O(7)#1-Yb(1)-N(2)	139.86(17)
O(7)#1-Yb(1)-O(2)	84.73(17)	O(2)-Yb(1)-O(4)	83.44(17)	O(7)-Yb(1)-N(2)	79.62(16)
O(7)-Yb(1)-O(2)	108.64(17)	O(1)-Yb(1)-O(4)	125.15(15)	O(3)-Yb(1)-N(2)	74.33(17)
O(3)-Yb(1)-O(2)	84.14(18)	O(7)#1-Yb(1)-N(1)	85.20(18)	O(2)-Yb(1)-N(2)	131.27(18)
O(7)#1-Yb(1)-O(1)	122.59(17)	O(7)-Yb(1)-N(1)	86.15(18)	O(1)-Yb(1)-N(2)	79.38(17)
O(7)-Yb(1)-O(1)	84.53(16)	O(3)-Yb(1)-N(1)	89.51(18)	O(4)-Yb(1)-N(2)	115.61(17)
O(3)-Yb(1)-O(1)	83.97(17)	O(2)-Yb(1)-N(1)	158.14(19)	N(1)-Yb(1)-N(2)	65.95(19)
O(2)-Yb(1)-O(1)	54.90(16)				
14					
Er(1)-O(3)	2.241(5)	Er(1)-O(1)	2.417(6)	Er(1)-O(1W)	2.452(6)
Er(1)-O(7)	2.292(6)	Er(1)-O(2W)	2.427(6)	Er(1)-O(2)	2.392(6)
Er(1)-O(4)	2.322(5)	Er(1)-O(8)#1	2.366(5)		
O(3)-Er(1)-O(7)	73.6(2)	O(2)-Er(1)-O(1)	54.30(19)	O(2)-Er(1)-O(2W)	91.9(2)
O(3)-Er(1)-O(4)	123.8(2)	O(3)-Er(1)-O(2W)	146.2(2)	O(1)-Er(1)-O(2W)	69.6(2)
O(7)-Er(1)-O(4)	80.6(2)	O(7)-Er(1)-O(2W)	140.1(2)	O(3)-Er(1)-O(1W)	76.1(3)
O(3)-Er(1)-O(8)#1	81.1(2)	O(4)-Er(1)-O(2W)	75.2(2)	O(7)-Er(1)-O(1W)	141.7(2)

O(7)-Er(1)-O(8)#1	127.3(2)	O(8)#1-Er(1)-O(2W)	76.8(2)	O(4)-Er(1)-O(1W)	136.6(2)
O(4)-Er(1)-O(8)#1	76.42(19)	O(3)-Er(1)-O(1)	134.2(2)	O(8)#1-Er(1)-O(1W)	68.9(2)
O(3)-Er(1)-O(2)	88.9(2)	O(7)-Er(1)-O(1)	76.8(2)	O(2)-Er(1)-O(1W)	71.3(2)
O(7)-Er(1)-O(2)	85.3(2)	O(4)-Er(1)-O(1)	83.81(18)	O(1)-Er(1)-O(1W)	110.1(2)
O(4)-Er(1)-O(2)	137.9(2)	O(8)#1-Er(1)-O(1)	144.35(19)	O(2W)-Er(1)-O(1W)	72.3(2)
O(8)#1-Er(1)-O(2)	140.2(2)				
15					
Ho(1)-O(2)	2.250(4)	Ho(1)-O(2W)	2.399(4)	Ho(1)-O(1W)	2.454(4)
Ho(1)-O(8)	2.283(3)	Ho(1)-O(4)	2.427(4)	Ho(1)-O(3)	2.386(3)
Ho(1)-O(1)#1	2.339(3)	Ho(1)-O(7)#1	2.380(3)		
O(2)-Ho(1)-O(8)	73.63(14)	O(3)-Ho(1)-O(2W)	91.69(14)	O(3)-Ho(1)-O(4)	54.39(12)
O(2)-Ho(1)-O(1)#1	123.79(14)	O(2)-Ho(1)-O(4)	134.84(12)	O(2W)-Ho(1)-O(4)	69.55(13)
O(8)-Ho(1)-O(1)#1	81.02(12)	O(8)-Ho(1)-O(4)	76.57(14)	O(2)-Ho(1)-O(1W)	75.60(15)
O(2)-Ho(1)-O(7)#1	80.66(13)	O(1)#1-Ho(1)-O(4)	83.16(12)	O(8)-Ho(1)-O(1W)	140.75(13)
O(8)-Ho(1)-O(7)#1	128.26(12)	O(7)#1-Ho(1)-O(4)	144.21(13)	O(1)#1-Ho(1)-O(1W)	137.25(12)
O(1)#1-Ho(1)-O(7)#1	77.24(12)	O(2)-Ho(1)-O(2W)	145.64(13)	O(7)#1-Ho(1)-O(1W)	68.51(12)
O(2)-Ho(1)-O(3)	89.31(14)	O(8)-Ho(1)-O(2W)	140.62(14)	O(3)-Ho(1)-O(1W)	71.50(13)
O(8)-Ho(1)-O(3)	84.30(13)	O(1)#1-Ho(1)-O(2W)	75.68(13)	O(2W)-Ho(1)-O(1W)	72.22(14)
O(1)#1-Ho(1)-O(3)	137.29(13)	O(7)#1-Ho(1)-O(2W)	76.68(13)	O(4)-Ho(1)-O(1W)	110.42(13)
O(7)#1-Ho(1)-O(3)	140.01(12)				

^eSymmetry transformations used to generate equivalent atoms: For 1: #1, -x + 1, -y + 1, -z + 1. For 2: #1, -x + 1, -y + 1, -z + 1. For 3: #1, -x + 2, -y + 2, -z + 1. For 4: #1, -x + 1, -y + 1, -z. For 5: #1, -x + 1, -y, -z + 1. For 6: #1, -x, -y, -z + 1. For 10: #1, -x + 1, -y + 1, -z + 1; #2, -x + 1, -y + 1/2, -z + 3/2. For 11: #1, -x + 1, -y + 1, -z + 1. For 12: #1, -x + 1, -y + 1, -z + 1. For 13: #1, -x + 1, -y + 1, -z + 1. For 14: #1, -x + 1, -y + 1, -z + 1. For 15: #1, -x + 1, -y + 1, -z + 1.

Reference

1. A. Panagiotopoulos, T. F. Zafiropoulos, S. P. Perlepes, E. Bakalbassis, I. Masson-Ramade, O. Kahn, A. Terzis and C. P. Raptopoulou, *Inorg. Chem.*, 1995, **34**, 4918-4920.