Supporting Information

Polymorphism and porosity in 4-[(4-hydroxy-3, 5-dimethylphenyl) (5-methyl-1H-imidazol-4-yl) methyl]-2, 6- dimethylphenol

Bhaskar Nath, Jubaraj B. Baruah*

Figure S1: ${ }^{1} \mathrm{H}-\mathrm{NMR}(4 \mathrm{oo} \mathrm{MHz})$ of Imbp in DMSO-d d_{6}

Figure S2: FT-IR spectra $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ of the polymorph I

Figure S3: Comparison of solid state IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ spectra of polymorph I (bottom, red) and polymorph II (middle, blue) and solvate III (top, black) in the region of 2000-450 cm^{-1}.

Figure S4: FT-IR spectra (Film) of acetone-Imbp and acetone- d_{6}-Imbp solvate.

Figure S5: FT-IR spectra $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ of the solvate IV

Polymorph I

Figure S6: Comparison of the simulated and experimental PXRD pattern of solvate III.

Figure S7: Comparison of the simulated and experimental PXRD pattern of solvate IV.

Figure S8: DSC of the solvate III (heating rate $5^{\circ} \mathrm{C} / \mathrm{min}$).

Figure S9: DSC of the solvate IV (heating rate $5^{\circ} \mathrm{C} / \mathrm{min}$)

Figure S10: TGA of the polymorph II showing the absence of disordered solvent molecules in the voids (heating rate $5^{\circ} \mathrm{C} / \mathrm{min}$).

Figure S11: TGA of the solvate III (heating rate $5^{\circ} \mathrm{C} / \mathrm{min}$).

Figure S12: TGA of the solvate IV (heating rate $5^{\circ} \mathrm{C} / \mathrm{min}$)

Figure S13: TGA of the polymorph II after exposing it to acetone vapour for 2 hours. (heating rate $5^{\circ} \mathrm{C} / \mathrm{min}$)

(a)

(b)

(c)

Figure S14: Presentation of the voids in the polymorph II from different directions.

Figure S15: DSC of the polymorph I and II (heating rate $5^{\circ} \mathrm{C} /$ minute).

Figure S16: UV-visible spectra of DMSO solvate $\left(1.2 \times 10^{-2} \mathrm{M}, 2 \mathrm{~mL}\right)$ with $50 \mu \mathrm{~L}$ incremental addition of acetone.

Figure S17: The PXRD of the (a) acetone solvate III (simulated) and the (b) PXRD of the polymorph II after exposure to acetone vapour (suggests transformation of II to III).

Figure S18: The experimentally observed PXRD of the (a) DMSO solvate IV after heating up to $200^{\circ} \mathrm{C}$ and the (b) polymorph II (Suggesting conversion of IV to II).

Figure S19: Plot for pore size distribution of the polymorph II

Figure S20: The changes of UV-vis spectra of II in DMSO ($2 \times 10^{-2} \mathrm{M}, 2 \mathrm{~mL}$, on $50 \mu \mathrm{~L}$ incremental addition of DMSO.

Table S1: Some relevant hydrogen-bond parameters of I-IV.

Compound	D-H $\cdots \mathrm{A}$	$\mathrm{d}_{\mathrm{D}-\mathrm{H}(\AA))}$	$\mathrm{d}_{\mathrm{H} \cdots \mathrm{A}(\AA)}$	$\mathrm{d}_{\mathrm{D} \cdots \mathrm{A}(\AA)}$	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$

I	$\mathrm{O}(1)-\mathrm{H} \cdots \mathrm{O}(2)[\mathrm{x}, 3 / 2-\mathrm{y}, 1 / 2+\mathrm{z}]$	0.82	1.95	$2.705(2)$	152
	$\mathrm{O}(2)-\mathrm{H} \cdots \mathrm{N}(2)[1-\mathrm{x}, 2-\mathrm{y},-\mathrm{z}]$	0.82	1.91	$2.669(3)$	154
II	$\mathrm{O}(1)-\mathrm{H} \cdots \mathrm{O}(2)[1 / 2+\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}]$	0.82	1.89	$2.680(8)$	161
	$\mathrm{O}(2)-\mathrm{H} \cdots \mathrm{N}(2)[-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}]$	0.82	1.84	$2.617(7)$	157
	$\mathrm{O}(1)-\mathrm{H} \cdots \mathrm{N}(2)[1-\mathrm{x},-\mathrm{y},-\mathrm{z}]$	0.82	1.86	2.6241	155
	$\mathrm{O}(2)-\mathrm{H} \cdots \mathrm{O}(1)[-1 / 2+\mathrm{x}, 1 / 2-\mathrm{y},-1 / 2+\mathrm{z}]$	0.82	1.92	2.6750	153
	$\mathrm{C}(13)-\mathrm{H} \cdot \cdots \mathrm{O} 3$	0.96	2.71	3.633	160.74
	$\mathrm{O}(1)-\mathrm{H} \cdots \mathrm{N}(2)[1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}]$	$0.86(6)$	$1.87(6)$	$2.721(5)$	$169(5)$
	$\mathrm{O}(2)-\mathrm{H} \cdots \mathrm{O}(4)$	$0.87(6)$	$1.91(4)$	$2.702(6)$	$151(5)$
	$\mathrm{O}(4)-\mathrm{H} \cdots \mathrm{O}(2)$	$0.84(5)$	$2.24(13)$	$2.702(6)$	$114(10)$
	$\mathrm{O}(4)-\mathrm{H} \cdots \mathrm{O}(1)[\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}]$	$0.87(3)$	$2.04(4)$	$2.889(6)$	$164(4)$
	$\mathrm{C}(12)-\mathrm{H} \cdots \mathrm{O}(3)$	0.929	2.696	3.520	148.24
	$\mathrm{C}(15)-\mathrm{H} \cdots \mathrm{O}(1)[1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}]$	0.93	2.57	$3.490(5)$	172

