Bromoperoxidase mimics as catalysts for oxidative bromination — Synthesis, Structures and Properties of the diversified oxidation state of vanadium (III, IV and V) complexes with pincer-N-heterocycle ligands

Chen Chen², Qiao Sun³, Dongxue Ren², Rui Zhang², Feng Ying Bai^{1*}, Yongheng Xing^{2*}, Zhan Shi⁴

¹ College of Chemistry and Chemical engineering, Liaoning Normal University, Huanghe Road 850[#], Dalian City, 116029, P.R. China.

² ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072

³ College of Life Science, Liaoning Normal University, Dalian 11602, P.R. China

⁴ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China

*e-mail: <u>xingyongheng2000@163.com</u> tel: 0411-82156987

Table S1. The deviations of the coordinated atoms out of equatorial plane for 1-5.

- Table S2. Eigenvalues (in Hartree) of HOMO and LUMO orbitals (a.u) and the gaps (eV) between them of the complexes 1-5.
- Table S3. The atomic net charge for the complexes calculated at the PBE level.
- Fig. S1 The measurable absorbance dependence of time for the complexes 2-5. Conditions used: pH = 5.8, c(KBr) = 0.4 mol/L, $c(H_2O_2) = 1 \text{ mmol/L}$, $c(phenol red) = 10^{-4} \text{ mol/L}$. $c(complex 2/mmol/L) = a: 1.53 \times 10^{-2}$; b: 3.01×10^{-2} ; c: 4.58×10^{-2} ; d: 6.11×10^{-2} ; e: 7.64×10^{-2} . $c(complex 3/mmol/L) = a: 7.39 \times 10^{-3}$; b: 1.48×10^{-2} ; c: 2.22×10^{-2} ; d: 2.96×10^{-2} ; e: 3.69×10^{-2} . $c(complex 4/mmol/L) = a: 1.96 \times 10^{-2}$; b: 3.92×10^{-2} ; c: 5.89×10^{-2} ; d: 9.81×10^{-2} ; e: 1.18×10^{-1} ; e: 1.06×10^{-1} . $c(complex 5/mmol/L) = a: 1.87 \times 10^{-2}$; b: 3.75×10^{-2} ; c: 5.62×10^{-2} ; d: 7.49×10^{-2} ; e: 9.37×10^{-1} .
- Fig. S2 -log(dc/dt) dependence of -logc for 1 in DMF–H₂O at 30 ± 0.5 °C (c is the concentration of the oxidovanadium complex 1; Conditions used: c(phosphate buffer) = 50 mmol/L, pH = 5.8, c(KBr) = 0.4 mol/L, c(phenol red) = 10⁻⁴ mol/L.

Table S1. The deviations of the coordinated atoms out of equatorial plane for 1-5

1		2		3		4		5	
V	-0.0088(14)	V	0.4435(22)	V1	-0.0878(14)	V	-0.2738(16)	V	-0.3733(14)
O2	0.0000	0	2.0320(37)	01	0.5165(18)	01	-1.8658(29)	01	-1.9640(27)
03	0.0000	N3	-0.2321(21)	O2	1.9732(27)	O2	1.9485(29)	O2	1.8224(27)
N5	1.9807(27)	N7	-1.7060(42)	03	-0.2415(17)	03	0.0105(11)	03	0.1048(10)
N1	0.0000	N2	-0.2226(20)	O4	-2.0678(27)	N1	0.0164(18)	N1	0.1662(16)
N6	-1.9961(28)	N5	0.2260(20)	N1	0.4646(20)	N4	-0.0130(14)	N4	-0.1343(13)
		N6	0.2287(21)	N5	-0.6358(19)	N2	-0.0139(15)	N2	-0.1367(13)
				N7	-0.1038(17)				

Table S2. Eigenvalues (in Hartree) of HOMO and LUMO orbitals (a.u) and the gaps (eV) between them of the complexes **1-5**.

Complex	1	2	3	4	5
НОМО	-0.2625	-0.1819	-0.1850	-0.1829	-0.1773
LUMO	-0.1495	-0.1818	-0.1834	-0.1827	-0.1769
Gap	3.074	0.002	0.037	0.005	0.009

	1		2		3		4		5		
	V1	0.724	V	0.422	V1	0.554	V	1.113	V	1.101	
	O2	-0.481	0	-0.539	01	-0.481	01	-0.571	01	-0.604	
	O3	-0.471	N3	-0.201	02	-0.489	02	-0.608	02	-0.566	
	N5	-0.197	N7	-0.432	03	-0.467	03	-0.541	03	-0.571	
	N1	-0.513	N2	-0.208	O4	-0.471	N1	-0.417	N1	-0.284	
	N6	-0.199	N5	-0.185	N1	-0.450	N4	-0.291	N4	-0.282	
			N6	-0.181	N5	-0.185	N2	-0.312	N2	-0.135	
					N7	-0.218					
Absorbance(A) 0.0 0.0 00 00 00 00 00 00 00 00 00 00 00		5 10	- 15 t(min)	• d • c • b • • • • a 20 25	30	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	14 - 12 - .1 - 08 - 04 - 02 - 0 - 0 - 0 -	10 20	t(min)	• b 	 50
1 8.0 (V) 8.0	Co -	mplex 4	1	e d c b		Absorbance(A)	1.4 1.2 1 0.8 0.6 0.4 0.2 0	Complex 5		e d b	c

Table S3. The atomic net charge for the complexes calculated at the PBE level.

t(min)

Fig. S2 -log(dc/dt) dependence of -logc for **2-5** in DMF–H₂O at 30 ± 0.5 °C (c is the concentration of the oxidovanadium complex **2-5**; Conditions used: c(phosphate buffer) = 50 mmol/L, pH = 5.8, c(KBr) = 0.4 mol/L, c(phenol red) = 10⁻⁴ mol/L.