## Solvent-free synthesis of new manganese phosphate-oxalate hybrid solids

Chunmei Duan,<sup>a</sup> Daibing Luo,<sup>b</sup> Rui Shang<sup>a</sup> and Zhien Lin\*<sup>a</sup>

<sup>a</sup> College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

<sup>b</sup> Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China

\* To whom correspondence should be addressed. E-mail: zhienlin@scu.edu.cn

## **Physical measurements:**

The thermogravimetric analyses were performed on a Mettler Toledo TGA/SDTA 851e analyzer in a flow of N<sub>2</sub> with a heating rate of 10 °C/min. IR spectra (KBr pellets) were recorded on an ABB Bomen MB 102 spectrometer. Powder X-ray diffraction (XRD) data were obtained using a Rigaku D/MAX-rA diffractometer with Cu-K $\alpha$  radiation ( $\lambda$  = 1.5418 Å). The photoluminescent spectra were measured on a Perkin-Elmer LS 55 luminescence spectrometer equipped with a 450 W xenon lamp.

## Synthesis

Synthesis of Mn(2,2'-bpy)(H<sub>2</sub>PO<sub>4</sub>)(C<sub>2</sub>O<sub>4</sub>)<sub>0.5</sub> (1): A mixture of Mn(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>·2H<sub>2</sub>O (0.569 g), H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>·2H<sub>2</sub>O (0.378 g), and 2,2'-bipyridine (0.312 g) was sealed in a Teflon-lined stainless steel autoclave and heated at 150 °C for 7 d. The autoclave was subsequently allowed to cool to room temperature. Rod-like crystals were recovered by filtration, washed with distilled water, and finally dried at ambient temperature (15.3 % yield based on manganese).

Synthesis of Mn(phen)(H<sub>2</sub>PO<sub>4</sub>)(C<sub>2</sub>O<sub>4</sub>)<sub>0.5</sub> (2): A mixture of Mn(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>·2H<sub>2</sub>O (0.569 g), H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>·2H<sub>2</sub>O (0.504 g), and 1,10-phenanthroline·H<sub>2</sub>O (0.401 g) was sealed in a Teflon-lined stainless steel autoclave and heated at 150 °C for 14 d. The autoclave was subsequently allowed to cool to room temperature. Rod-like crystals were recovered by filtration, washed with distilled water, and finally dried at ambient temperature (52.4 % yield based on manganese).

Synthesis of  $(4,4'-H_2bpy)_{0.5}$ ·Mn $(H_2PO_4)(C_2O_4)$  (3): A mixture of Mn $(H_2PO_4)_2$ ·2H<sub>2</sub>O (0.569 g), H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>·2H<sub>2</sub>O (0.252 g), and 4,4'-bipyridine (0.312 g) was sealed in a

- 2 -

Teflon-lined stainless steel autoclave and heated at 150 °C for 14 d. The autoclave was subsequently allowed to cool to room temperature. Prism-like crystals were recovered by filtration, washed with distilled water, and finally dried at ambient temperature (30.3 % yield based on manganese).



**Figure S1.** ORTEP plot of the asymmetric unit of compound **1**, showing the labeling scheme and the 30% probability displacement ellipsoid.



**Figure S2.** ORTEP plot of the asymmetric unit of compound **2**, showing the labeling scheme and the 30% probability displacement ellipsoid.



**Figure S3.** ORTEP plot of the asymmetric unit of compound **3**, showing the labeling scheme and the 30% probability displacement ellipsoid.





FTIR data (cm<sup>-1</sup>): 3070 (s, v(C-H)), 1650 (vs, v(C=O)), 1480 (m, δ(C-H)), 1440 (s, v(C-C)), 1310 (s, v(C-O)), 1240 (s, v(C–N)), 1080 (s, v<sub>as</sub>(P–O)), 1020 (m, v<sub>as</sub>(P–O)), 955 (s, v<sub>as</sub>(P–O)), 876 (s, v<sub>s</sub>(P–O)), 766 (s, v<sub>s</sub>(P–O)), 513 (s, δ(P–O))





FTIR data (cm<sup>-1</sup>): 3420 (m, v(OH) , 3180 (v(C-H)), 1640 (vs, v(C=O)), 1520 (m, v(C-C)), 1430 (s, v(C-C)), 1310 (m, v(C-O)), 1200 (m, v(C-N)) , 1030(s, v<sub>as</sub>(P–O)), 964 (s, v<sub>as</sub>(P–O)), 854 (s, v<sub>s</sub>(P–O)), 781(m, v<sub>s</sub>(P–O)) , 725(s, v<sub>s</sub>(P–O)) , 515 (m, δ(P–O))





FTIR data (cm<sup>-1</sup>): 3420 (vs, v(O-H)), 3120 (w, v(C-H)), 3050 (w, v(C-H)), 1620 (vs, v(C=O)), 1460 (m, v(C-C)), 1390 (m,  $\delta$ (C–H), 1300 (m, v(C-O)), 1210 (w, v(C–N)), 1120 (s, v<sub>as</sub>(P–O)), 1050 (m, v<sub>as</sub>(P–O)), 995(m, v<sub>as</sub>(P–O)), 827 (m, v<sub>s</sub>(P–O)), 766 (s, v<sub>s</sub>(P–O)), 596 (m,  $\delta$ (P–O)), 523 (s,  $\delta$ (P–O))



**Fig. S7.** (a) Simulated and (b) experimental powder XRD patterns of compound **1** and (c) the as-synthesized sample upon treatment at 700 °C for 1 h.



**Fig. S8.** (a) Simulated and (b) experimental powder XRD patterns of compound **2** and (c) the as-synthesized sample upon treatment at 700 °C for 1 h.



**Fig. S9.** (a) Simulated and (b) experimental powder XRD patterns of compound **3** and (c) the as-synthesized sample upon treatment at 700 °C for 1 h.



Fig. S10. TGA curve of compound 1 in a flow of air with a heating rate of 10 °C/min.



Fig. S11. TGA curve of compound 2 in a flow of air with a heating rate of 10 °C/min.



Fig. S12. TGA curve of compound 3 in a flow of air with a heating rate of 10 °C/min.



Fig. S13. Solid state photoluminescent spectrum of compound 1 at room temperature.



Fig. S14. Solid state photoluminescent spectrum of compound 2 at room temperature.



Fig. S15. Solid state photoluminescent spectrum of compound 3 at room temperature.

| D-H····A <sup>a</sup> | d(D-H)(Å) | d(H…A)(Å) | $d(D \cdots A)$ (Å) | <(DHA) (deg) |
|-----------------------|-----------|-----------|---------------------|--------------|
| Compound 1            |           |           |                     |              |
| O3-H1…O2#1            | 0.82      | 1.87      | 2.674(3)            | 165.9        |
| O4-H2…O5              | 0.82      | 1.88      | 2.693(3)            | 171.6        |
| Compound 2            |           |           |                     |              |
| O3-H1…O2#2            | 0.82      | 1.71      | 2.524(2)            | 173.3        |
| O4-H2···O5#3          | 0.82      | 1.89      | 2.683(3)            | 161.8        |
| Compound 3            |           |           |                     |              |
| N1-H3…O8#4            | 0.86      | 1.81      | 2.666(3)            | 177.3        |

## Table 1. Hydrogen bonds information for compounds 1-3

<sup>a</sup> Symmetry transformations used to generate equivalent atoms: #1 -x, -y+1, -z+1; #2 -x+1, -y+1, -z+1; #3 -x+1, -y, -z+1; #4 x-1, y, z.