Solvent-free synthesis of new manganese phosphate-oxalate

hybrid solids

Chunmei Duan, ${ }^{a}$ Daibing Luo, ${ }^{b}$ Rui Shang ${ }^{a}$ and Zhien Lin* ${ }^{a}$
${ }^{\text {a }}$ College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
${ }^{\text {b }}$ Analytical \& Testing Center, Sichuan University, Chengdu 610064, P. R. China

* To whom correspondence should be addressed. E-mail: zhienlin@scu.edu.cn

Physical measurements:

The thermogravimetric analyses were performed on a Mettler Toledo TGA/SDTA 851e analyzer in a flow of N_{2} with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. IR spectra (KBr pellets) were recorded on an ABB Bomen MB 102 spectrometer. Powder X-ray diffraction (XRD) data were obtained using a Rigaku D/MAX-rA diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=$ 1.5418 Å). The photoluminescent spectra were measured on a Perkin-Elmer LS 55 luminescence spectrometer equipped with a 450 W xenon lamp.

Synthesis

Synthesis of $\mathbf{M n}\left(\mathbf{2 , 2} \mathbf{2}^{\prime}-\right.$ bpy $)\left(\mathbf{H}_{2} \mathbf{P O}_{4}\right)\left(\mathbf{C}_{2} \mathbf{O}_{\mathbf{4}}\right)_{0.5}$ (1): A mixture of $\mathrm{Mn}_{\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)}^{2} \cdot 2 \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(0.569 \mathrm{~g}), \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.378 \mathrm{~g})$, and $2,2^{\prime}$-bipyridine (0.312 g) was sealed in a Teflon-lined stainless steel autoclave and heated at $150{ }^{\circ} \mathrm{C}$ for 7 d . The autoclave was subsequently allowed to cool to room temperature. Rod-like crystals were recovered by filtration, washed with distilled water, and finally dried at ambient temperature (15.3% yield based on manganese).

Synthesis of $\mathbf{M n}($ phen $)\left(\mathbf{H}_{2} \mathbf{P O}_{4}\right)\left(\mathbf{C}_{2} \mathbf{O}_{4}\right)_{0.5}(\mathbf{2})$: A mixture of $\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.569 \mathrm{~g})$, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.504 \mathrm{~g})$, and 1,10-phenanthroline $\cdot \mathrm{H}_{2} \mathrm{O}(0.401 \mathrm{~g})$ was sealed in a Teflon-lined stainless steel autoclave and heated at $150{ }^{\circ} \mathrm{C}$ for 14 d . The autoclave was subsequently allowed to cool to room temperature. Rod-like crystals were recovered by filtration, washed with distilled water, and finally dried at ambient temperature (52.4 \% yield based on manganese).

Synthesis of (4,4'- $\mathbf{H}_{\mathbf{2}}$ bpy $)_{0.5} \cdot \mathbf{M n}\left(\mathbf{H}_{2} \mathbf{P O}_{4}\right)\left(\mathbf{C}_{\mathbf{2}} \mathbf{O}_{4}\right)$ (3): A mixture of $\mathrm{Mn}^{\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)} 2 \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(0.569 \mathrm{~g}), \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.252 \mathrm{~g})$, and 4,4 '-bipyridine (0.312 g) was sealed in a

Teflon-lined stainless steel autoclave and heated at $150{ }^{\circ} \mathrm{C}$ for 14 d . The autoclave was subsequently allowed to cool to room temperature. Prism-like crystals were recovered by filtration, washed with distilled water, and finally dried at ambient temperature (30.3 \% yield based on manganese).

Figure S1. ORTEP plot of the asymmetric unit of compound 1, showing the labeling scheme and the 30% probability displacement ellipsoid.

Figure S2. ORTEP plot of the asymmetric unit of compound 2, showing the labeling scheme and the 30% probability displacement ellipsoid.

Figure S3. ORTEP plot of the asymmetric unit of compound 3, showing the labeling scheme and the 30% probability displacement ellipsoid.

Fig. S4. IR spectrum of compound 1.
FTIR data (cm^{-1}): $3070(\mathrm{~s}, v(\mathrm{C}-\mathrm{H})$), $1650(\mathrm{vs}, v(\mathrm{C}=\mathrm{O})$), $1480(\mathrm{~m}, \delta(\mathrm{C}-\mathrm{H})), 1440(\mathrm{~s}$, $\mathrm{v}(\mathrm{C}-\mathrm{C})$), 1310 ($\mathrm{s}, \mathrm{v}(\mathrm{C}-\mathrm{O})$), $1240(\mathrm{~s}, \mathrm{v}(\mathrm{C}-\mathrm{N})), 1080\left(\mathrm{~s}, \mathrm{v}_{\mathrm{as}}(\mathrm{P}-\mathrm{O})\right), 1020\left(\mathrm{~m}, \mathrm{v}_{\mathrm{as}}(\mathrm{P}-\mathrm{O})\right.$), $955\left(\mathrm{~s}, v_{\mathrm{as}}(\mathrm{P}-\mathrm{O})\right), 876\left(\mathrm{~s}, v_{\mathrm{s}}(\mathrm{P}-\mathrm{O})\right), 766\left(\mathrm{~s}, \mathrm{v}_{\mathrm{s}}(\mathrm{P}-\mathrm{O})\right), 513(\mathrm{~s}, \delta(\mathrm{P}-\mathrm{O}))$

Fig. S5. IR spectrum of compound 2.
FTIR data $\left(\mathrm{cm}^{-1}\right): 3420(\mathrm{~m}, v(\mathrm{OH}), 3180(v(\mathrm{C}-\mathrm{H})), 1640(\mathrm{vs}, v(\mathrm{C}=\mathrm{O})), 1520(\mathrm{~m}$, $v(\mathrm{C}-\mathrm{C})$), $1430(\mathrm{~s}, \mathrm{v}(\mathrm{C}-\mathrm{C})), 1310(\mathrm{~m}, v(\mathrm{C}-\mathrm{O})), 1200(\mathrm{~m}, v(\mathrm{C}-\mathrm{N})), 1030\left(\mathrm{~s}, \mathrm{v}_{\mathrm{as}}(\mathrm{P}-\mathrm{O})\right), 964$ $\left(\mathrm{s}, \mathrm{v}_{\mathrm{as}}(\mathrm{P}-\mathrm{O})\right), 854\left(\mathrm{~s}, \mathrm{v}_{\mathrm{s}}(\mathrm{P}-\mathrm{O})\right), 781\left(\mathrm{~m}, \mathrm{v}_{\mathrm{s}}(\mathrm{P}-\mathrm{O})\right), 725\left(\mathrm{~s}, \mathrm{v}_{\mathrm{s}}(\mathrm{P}-\mathrm{O})\right), 515(\mathrm{~m}, \delta(\mathrm{P}-\mathrm{O}))$

Fig. S6. IR spectrum of compound 3.
FTIR data $\left(\mathrm{cm}^{-1}\right)$: $3420(\mathrm{vs}, v(\mathrm{O}-\mathrm{H})$), $3120(\mathrm{w}, \mathrm{v}(\mathrm{C}-\mathrm{H})), 3050(\mathrm{w}, \mathrm{v}(\mathrm{C}-\mathrm{H})$), $1620(\mathrm{vs}$, $v(\mathrm{C}=\mathrm{O})$), 1460 ($\mathrm{m}, \mathrm{v}(\mathrm{C}-\mathrm{C})$), 1390 (m, $\delta(\mathrm{C}-\mathrm{H}), 1300(\mathrm{~m}, v(\mathrm{C}-\mathrm{O})), 1210(\mathrm{w}, v(\mathrm{C}-\mathrm{N})$), $1120\left(\mathrm{~s}, \mathrm{v}_{\mathrm{as}}(\mathrm{P}-\mathrm{O})\right.$), $1050\left(\mathrm{~m}, \mathrm{v}_{\mathrm{as}}(\mathrm{P}-\mathrm{O})\right), 995\left(\mathrm{~m}, \mathrm{v}_{\mathrm{as}}(\mathrm{P}-\mathrm{O})\right.$), $827\left(\mathrm{~m}, \mathrm{v}_{\mathrm{s}}(\mathrm{P}-\mathrm{O})\right), 766(\mathrm{~s}$, $\left.\mathrm{v}_{\mathrm{s}}(\mathrm{P}-\mathrm{O})\right), 596(\mathrm{~m}, \delta(\mathrm{P}-\mathrm{O})), 523(\mathrm{~s}, \delta(\mathrm{P}-\mathrm{O}))$

Fig. S7. (a) Simulated and (b) experimental powder XRD patterns of compound $\mathbf{1}$ and (c) the as-synthesized sample upon treatment at $700^{\circ} \mathrm{C}$ for 1 h .

Fig. S8. (a) Simulated and (b) experimental powder XRD patterns of compound 2 and (c) the as-synthesized sample upon treatment at $700^{\circ} \mathrm{C}$ for 1 h .

Fig. S9. (a) Simulated and (b) experimental powder XRD patterns of compound $\mathbf{3}$ and (c) the as-synthesized sample upon treatment at $700^{\circ} \mathrm{C}$ for 1 h .

Fig. S10. TGA curve of compound $\mathbf{1}$ in a flow of air with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$.

Fig. S11. TGA curve of compound 2 in a flow of air with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$.

Fig. S12. TGA curve of compound $\mathbf{3}$ in a flow of air with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$.

Fig. S13. Solid state photoluminescent spectrum of compound 1 at room temperature.

Fig. S14. Solid state photoluminescent spectrum of compound 2 at room temperature.

Fig. S15. Solid state photoluminescent spectrum of compound $\mathbf{3}$ at room temperature.

Table 1. Hydrogen bonds information for compounds 1-3

D-H $\cdots \mathrm{A}^{\mathrm{a}}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})(\AA)$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})(\AA)$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})(\AA)$	$<(\mathrm{DHA})(\mathrm{deg})$
Compound 1				
O3-H1 $\cdots \mathrm{O} 2 \# 1$	0.82	1.87	$2.674(3)$	165.9
O4-H2 $\cdots \mathrm{O} 5$	0.82	1.88	$2.693(3)$	171.6
Compound 2				
O3-H1 $\cdots \mathrm{O} 2 \# 2$	0.82	1.71	$2.524(2)$	173.3
O4-H2 $\cdots \mathrm{O}$ O\#3	0.82	1.89	$2.683(3)$	161.8
Compound 3				
N1-H3 $\cdots \mathrm{O} 8 \# 4$	0.86	1.81	$2.666(3)$	177.3

[^0]
[^0]: ${ }^{\text {a }}$ Symmetry transformations used to generate equivalent atoms: \#1-x, $-\mathrm{y}+1,-\mathrm{z}+1$; \#2 $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$; \#3 -x+1, -y, -z+1; \#4 x-1, y, z.

