Electronic Supplementary Information (ESI)

Structural and magnetic characterizations of the first manganese(III) Schiff base complexes involving hexathiocyanidoplatinate(IV) bridges

Fig. S1. The correlation between the ferromagnetic exchange (*J*) and Mn-O* distance. The linear curve was calculated according to ref. [23]. List of compounds: $[Mn(saltmen)(H_2O)]ClO_4$ (a), $[Mn(naphtmen)(H_2O)]ClO_4$ (b), [Mn(saltmen)(NCS)] (c), [Mn(naphtmen)(NCS)] (d), [Mn(naphtmen)(Cl)] (e), $[\{Mn(L4a)\}_2\{\mu-Pt(SCN)_6\}]_n$ (1).

Fig. S2. *Left*: the variation of magnetic properties for $S_1 = S_2 = 2$ dimer, with the fixed parameters J = -1 cm⁻¹ and g = 2.0, while *D* varies from -4 to 0 cm⁻¹ with the step equals 1 cm⁻¹. *Right*: the effect of ZFS on the temperature corresponding to the maximum of magnetization (susceptibility).

Fig. S3. The calculated spin density distribution using B3LYP/TZVP for $[{Mn(L4b)(H_2O)}_2{\mu-Pt(SCN)_6}]$ (2). Positive and negative spin densities are represented by dark blue, and green surfaces, respectively. *Left*: the isodensity surface of high-spin (HS) state with the cutoff values of 0.005 e·boh⁻³. *Right*: the isodensity surface of broken symmetry spin (BS) state with the cutoff values of 0.005 e·boh⁻³.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013

[{N	$[{Mn(L4a)NCS}_2] \text{ of } 1^a$			$[{Mn(L4b)(H_2O)(NCS)}_2] \text{ of } 2^b$		
	HS	BS		HS	BS	
$\rho(Mn)$	3.88	-3.88	$\rho(Mn')$	3.89	-3.89	
$\rho(N1)$	-0.07	0.07	$\rho(N1')$	-0.07	0.07	
$\rho(N2)$	-0.08	0.09	$\rho(N2')$	-0.06	0.06	
$\rho(N5)$	0.04	-0.04	$\rho(N3')$	0.04	-0.04	
$\rho(01)$	0.02	-0.02	$\rho(01')$	0.02	-0.02	
$\rho(O2)$	0.04	-0.004	$\rho(02')$	0.02	-0.02	
$\rho(O2')$	0.04	0.004	$\rho(03')$	0.03	-0.03	
$\rho(01')$	0.02	0.02	$\rho(\text{H1'})$	0.002	0.000	
$\rho(N5')$	0.04	0.04	ρ(H2')	0.002	0.000	
$\rho(N2')$	-0.08	-0.09	$\rho(\text{H2})$	0.002	0.000	
$\rho(N1')$	-0.07	-0.07	<i>ρ</i> (H1)	0.002	0.000	
$\rho(Mn')$	3.88	3.88	$\rho(O3)$	0.03	0.03	
• • •			$\rho(O2)$	0.02	0.02	
			$\rho(01)$	0.02	0.02	
			$\rho(N3)$	0.04	0.04	
			$\rho(N2)$	-0.06	-0.06	
			$\rho(N1)$	-0.07	-0.07	
			$\rho(Mn)$	3.89	3.89	
< <i>S</i> ² >	20.08	4.08	$\langle S^2 \rangle$	20.09	4.09	
J _M	$J_{\rm Mn-OPh-Mn} = +1.74 \ {\rm cm}^{-1}$			$J_{\text{Mn-Owater-HOPh-Mn}} = -0.45 \text{ cm}^{-1}$		

Table S1. The DFT calculated net Mulliken spin densities (ρ), the expectation values $\langle S^2 \rangle$ and exchange energy (*J*) from HS and BS states for the supramolecular dimers [{Mn(L4a)NCS}₂] and [{Mn(L4b)(H₂O)(NCS)}₂] extracted from X-ray structures of **1**, and **2**, respectively.

^{*a*} Symmetry code for atoms with the apostrophe: 1-x, 1-y, 1-z. ^{*b*} Symmetry code for atoms with the apostrophe: 1-x, -y, 1-z; HS = high-spin state, BS = broken-symmetry spin state.

Table S2. The DFT calculated net Mulliken spin densities (ρ), the expectation values $\langle S^2 \rangle$ and exchange energy (*J*) from HS and BS states of the trinuclear [{Mn(L4b)(H₂O)}₂{ μ -Pt(SCN)₆}] (**2**) based on a geometry following from X-ray structural determination.^{*a*}

	HS	BS
$\rho(Mn')$	3.90	-3.90
<i>ρ</i> (N1')	-0.06	0.06
<i>ρ</i> (N2')	-0.06	0.06
<i>ρ</i> (01')	0.02	-0.03
<i>ρ</i> (O2')	0.03	-0.03
<i>ρ</i> (O3')	0.02	-0.02
<i>ρ</i> (N3')	0.03	-0.03
<i>ρ</i> (C25')	-0.003	0.004
<i>ρ</i> (S1A')	0.005	-0.006
$\rho(\text{Pt})$	-0.0003	0.0001
<i>ρ</i> (S1A)	0.005	0.006
<i>ρ</i> (C25)	-0.003	-0.003
$\rho(N3)$	0.03	0.03
<i>ρ</i> (O3)	0.02	0.02
<i>ρ</i> (O2)	0.03	0.03
<i>ρ</i> (01)	0.02	0.02
$\rho(N2)$	-0.06	-0.06
$\rho(N1)$	-0.06	-0.06
$\rho(Mn)$	3.90	3.90
$< S^2 >$	20.07	4.07
	$J = -0.027 \text{ cm}^{-1}$	

^{*a*} Symmetry code for atoms with the apostrophe: -x, -y, -z