The 3D Porous Metal-Organic Frameworks Based on Bis(pyrazinyl)-trizole: Structures, Photoluminescence and Gas Adsorption Properties

Jie Pan,^{ab} Fei-Long Jiang,^a Da-Qiang Yuan,^a Xiao-Chen Shan,^{ab} Ming-Yan Wu,^a Kang Zhou,^{ab} Yan-Li Gai,^{ab} Xing-Jun Li^{ab} and Mao-Chun Hong*^a

^aState Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China ^bGraduate School of the Chinese Academy of Sciences, Beijing, 100049, China

To whom correspondence should be addressed. Tel: +86-591-83792460. Fax: +86-591-83794946. E-mail: hmc@fjirsm.ac.cn

Complex 1 ^a								
Zn1—01	1.9754 (19)	Zn1—O3 ⁱ	2.0190 (18)					
Zn1—N3	2.0193 (18)	Zn1—N1 ⁱⁱ	2.119 (2)					
Zn1—O2 ⁱ	2.403 (2)							
$O1$ — $Zn1$ — $O3^{i}$	98.28 (9)	O1—Zn1—N3	107.09 (8)					
O3 ⁱ —Zn1—N3	147.57 (9)	O1—Zn1—N1 ⁱⁱ	99.67 (10)					
O3 ⁱ —Zn1—N1 ⁱⁱ	101.85 (9)	O1—Zn1—O2 ⁱ	91.33 (8)					
$O3^{i}$ —Zn1— $O2^{i}$	58.06 (7)	N3—Zn1—O2 ⁱ	100.73 (9)					
N1 ⁱⁱ —Zn1—O2 ⁱ	150.65 (8)	O3 ⁱ —Zn1—N1 ⁱⁱ	93.26 (8)					
Complex 2^{b}								
Cd1—O1	2.231 (5)	Cd1—O2 ⁱ	2.313 (5)					
Cd1—O5 ⁱⁱ	2.335 (5)	Cd1—N1 ⁱⁱⁱ	2.357 (5)					
Cd1—N7	2.366 (5)	Cd1—O6 ⁱⁱ	2.443 (5)					
Cd2—O4 ^{iv}	2.234 (5)	Cd2—O8	2.297 (6)					
Cd2—N5	2.341 (5)	Cd2—N4 ^v	2.346 (5)					
Cd2—N2 ^v	2.504 (6)	Cd2—N6	2.524 (6)					
O1—Cd1—O2 ⁱ	134.0 (2)	O1—Cd1—O5 ⁱⁱ	90.4 (2)					
O2 ⁱ —Cd1—O5 ⁱⁱ	135.54 (18)	O1—Cd1—N1 ⁱⁱⁱ	93.8 (2)					
O2 ⁱ —Cd1—N1 ⁱⁱⁱ	84.17 (19)	O5 ⁱⁱ —Cd1—N1 ⁱⁱⁱ	94.87 (19)					
O1—Cd1—N7	94.38 (19)	O2 ⁱ —Cd1—N7	86.75 (18)					
O5 ⁱⁱ —Cd1—N7	89.80 (18)	N1 ⁱⁱⁱ —Cd1—N7	170.6 (2)					
O1—Cd1—O6 ⁱⁱ	145.27 (19)	$O2^{i}$ —Cd1—O6 ⁱⁱ	80.68 (18)					
O5 ⁱⁱ —Cd1—O6 ⁱⁱ	54.89 (17)	N1 ⁱⁱⁱ —Cd1—O6 ⁱⁱ	88.15 (16)					
N7—Cd1—O6 ⁱⁱ	87.85 (16)	O4 ^{iv} —Cd2—O8	164.6 (2)					
O4 ^{iv} —Cd2—N5	97.26 (19)	O8—Cd2—N5	93.37 (19)					
O4 ^{iv} —Cd2—N4 ^v	96.36 (19)	$O8$ — $Cd2$ — $N4^{v}$	95.77 (19)					
N5—Cd2—N4 ^v	84.11 (19)	$O4^{iv}$ —Cd2—N2 ^v	95.34 (19)					
$O8$ — $Cd2$ — $N2^{v}$	79.97 (18)	$N5-Cd2-N2^{v}$	152.37 (17)					
$N4^{v}$ —Cd2— $N2^{v}$	70.09 (18)	O4 ^{iv} —Cd2—N6	90.09 (19)					
O8—Cd2—N6	83.06 (18)	N5—Cd2—N6	70.20 (19)					
N4 ^v —Cd2—N6	154.12 (18)	N2 ^v —Cd2—N6	134.34 (19)					
^a Symmetry codes: (i) 1/2+x, 1/2-y, 1/4-z; (ii) -1/2+x, 3/2-y, 1/4-z; (iii) -1/2+x, 1/2-y, 1/4-z; (iv)								
1/2+x, 3/2-y, 1/4-z; (v) y, x, -z. ^b Symmetry codes: (i) 1-x, y, 1/2-z; (ii) x, 1-y, -1/2+z; (iii) 1-x, 1-y,								
-z; (iv) 1/2-x, -1/2+y, 1/2-z; (v) 1-x, -y, -z; (vi) x, 1-y, 1/2+z; (vii) 1/2-x, 1/2+y, 1/2-z.								

1. Selected Bond Lengths (A) and Angles (deg) for Complexes 1 and 2			0				
	1.	Selected Bond	Lengths (Å)	and Angles	(deg) for	Complexes 1	and 2 .

Table S1. Selected Bond Lengths (Å) and Angles (deg) for Complexes 1 and 2.

2. TGA curves of the samples after immerged in methanol and dehydrated.

Figure S1. (a) TGA curves of 1-ex and 1a; (b) TGA curves of 2-ex and 2a.

3. PXRD patterns of the samples after immerged in methanol and dehydrated.

Figure S2. (a) PXRD patterns of simulated one and complex 1, 1-ex and 1a;(b) PXRD patterns of simulated one and complex 2, 2-ex and 2a.

4. Coverage dependency of the isosteric heat of adsorption for CO₂ and CH₄ in 1a.

Figure S3. (a) Coverage dependency of the isosteric heat of adsorption for CO_2 in 1a; (b) Coverage dependency of the isosteric heat of adsorption for CH_4 in 1a.

5. Crystal photographs of **1** under UV irradiation at room temperature.

crystals of 1

1 under UV irradiation

