Supporting information for

Positional Isomeric and Substitutent Effect on the Assemblies of a Series of d¹⁰ Coordination Polymers Based Upon Unsymmetric Tricarboxylate Acids and Nitrogen-Containing Ligands

Ting Liu,^{*a*} Suna Wang,^{*a*} Jing Lu,^{*a*} Jianmin Dou^{*a*}, Meiju Niu^{*a*}, Dacheng Li^{*a*} and Junfeng Bai^{*b*}

		1	
7n(1) O(6R)	1 0/8(2)	$\frac{\mathbf{I}}{\mathbf{Zn}(1) \mathbf{O}(1)}$	2 031(3)
Zn(1) O(0B)	1.948(2)	$Z_{n}(1) O(1)$	2.031(3)
2II(1)-O(4A)	1.930(2)	$2\Pi(1) - O(2C)$	1.933(2)
O(4)-Zn(1)-O(6B)	105.45(11)	O(1) - Zn(1) - O(0B)	90.73(11)
O(4A)-Zn(1)-O(2C)	127.57(12)	O(1)-Zn(1)-O(2C)	106.55(12)
O(6B)-Zn(1)-O(2C)	112.07(12)	O(1)-Zn(1)-O(4A)	103.86(10)
		2	
Cd(1)-O(1)	2.301(12)	Cd(1)-O(2C)	2.198(8)
Cd(1)-O(4A)	2.319(8)	Cd(1)-O(5B)	2.355(8)
Cd(1)-O(3A)	2.393(9)	Cd(1)-O(6B)	2.479(9)
O(1)-Cd(1)-O(2C)	101.5(3)	O(1)-Cd(1)-O(3A)	83.8(3)
O(1)-Cd(1)-O(5B)	130.6(3)	O(1)-Cd(1)-O(6B)	80.5(3)
O(1)- $Cd(1)$ - $O(4A)$	106.4(3)	O(2C)-Cd(1)-O(3A)	115.5(3)
O(2C)-Cd(1)-O(4A)	148 6(3)	O(2C)-Cd(1)-O(5B)	84 2(3)
O(3A)-Cd(1)-O(4A)	55.0(3)	O(3A)-Cd(1)-O(5B)	138.0(3)
O(2C)-Cd(1)-O(6B)	1143(3)	O(3A)-Cd(1)-O(6B)	129.8(3)
O(4A) Cd(1) O(5B)	88 A(3)	O(4A) Cd(1) O(6B)	84.6(3)
O(4R) - Cd(1) - O(5B) O(5R) Cd(1) O(6R)	53.7(3)	O(4A)-Cd(1)-O(0B)	84.0(3)
O(3B)-Cd(1)-O(0B)	55.7(5)	3	
	1.007(0)	3	2 202/2
Zn(1)- $U(1A)$	1.937(3)	$\sum n(1) - U(3)$	2.203(3)
Zn(1)-N(1)	2.033(3)	Zn(1)-N(2B)	2.058(3)
Zn(1)-O(4)	2.133(3)	O(1A)-Zn(1)-O(3)	104.56(14)
O(1A)-Zn(1)-O(4)	111.05(13)	O(1A)-Zn(1)-N(1)	108.86(14)
O(3)-Zn(1)-O(4)	60.02(14)	O(3)-Zn(1)-N(1)	142.68(14)
O(1A)-Zn(1)-N(2B)	91.51(13)	O(3)-Zn(1)-N(2B)	90.41(14)
O(4)-Zn(1)-N(1)	92.21(14)	O(4)-Zn(1)-N(2B)	145.90(15)
N(1)-Zn(1)-N(2B)	104.66(14)		
		4	
Zn(1)-O(1)	1.952(4)	Zn(1)-O(7)	2.170(5)
Zn(1)-N(2B)	2.044(6)	Zn(2)-O(3)	2.082(7)
Zn(1)-N(1)	2.184(5)	Zn(2)-O(4)	2.460(11)
$Z_n(2) - O(3^2)$	1.927(14)	Zn(2) - N(3)	2.044(4)
O(1)-Zn(1)-O(7)	92.84(13)	O(1)-Zn(1)-N(1)	86.17(13)
O(1)-Zn(1)-O(1A)	1130(2)	O(1) - Zn(1) - N(2B)	12343(11)
O(7)-Zn(1)-N(1)	178.2(2)	O(7) - Zn(1) - N(2B)	88 5(2)
O(3)-Zn(2)-O(4)	57 5(3)	O(3)-Zn(2)-O(3C)	132 A(5)
N(1) (7n(1) N(2P))	02.2(2)	O(3) - Zn(2) - O(3C)	132.4(3)
$O(2) T_{r}(2) N(2)$	93.3(2)	O(3)-ZII(2)- $O(4C)$	90.3(4)
O(3)-ZII(2)-IN(3) $O(4), Z_{22}(2), O(4C)$	120.3(3)	O(3)-ZII(2)-N(3C) O(4) Zr(2) N(2)	91.4(2)
O(4) - ZII(2) - O(4C)	97.3(3)	O(4)-ZII(2)-IN(5)	91.0(3)
O(4)-Zn(2)-N(3C)	147.4(3)	N(3)-Zn(2)-N(3C)	97.4(2)
	2 2 (1 (0)	5	2 210(0)
Cd(1)-O(4A)	2.361(8)	Cd(1)-O(8)	2.310(8)
Ca(1)-O(11A)	2.309(7)	Cd(1)- $N(2B)$	2.324(0)
Cd(1)-O(10)	2.2/1(/)	Cd(2)-O(3A)	2.304(7)
Cd(2)-N(1)	2.293(0)	Cd(2)-O(5)	2.316(7)
Cd(2)-O(7)	2.387(7)	Cd(2)-O(9)	2.450(7)
Cd(2)-O(6)	2.549(7)	O(4A)-Cd(1)-O(8)	165.6(3)
O(5)-Cd(2)-N(1)	145.8(3)	O(4A)-Cd(1)-O(10)	93.6 (3)
O(5)-Cd(2)-O(9)	87.0(3)	O(4A)-Cd(1)-N(2B)	90.4(3)
O(4A)-Cd(1)-O(11A)	102.3(2)	O(8)-Cd(1)-O(10)	80.9(3)
O(8)-Cd(1)-O(11A)	91.3(3)	O(5)-Cd(2)-O(7)	90.9(3)
O(3A)-Cd(2)-O(5)	88.2(3)	O(3A)-Cd(2)-O(6)	138.6(3)
O(8)-Cd(1)-N(2B)	83.6(3)	O(3A)-Cd(2)-O(7)	88.6(3)
O(3A)-Cd(2)-O(9)	102.2(3)	O(3A)-Cd(2)-N(1)	124.6(3)
O(5)-Cd(2)-O(6)	54.2(3)		
		6	
Cd(1)-O(4A)	2.323(8)	Cd(1)-O(8)	2.315(8)
Cd(1)-O(11A)	2.263(7)	Cd(1)-O(12A)	2.633(7)
Cd(1) - O(10)	2.242(7)	Cd(1)-N(2B)	2.302(9)
$Cd(2) - O(3\Delta)$	2 286(7)	Cd(2)-O(5)	2.285(7)
Cd(2) = O(7)	2.200(7)	Cd(2) = O(0)	2.205(7) 2 430(7)
Cd(2) = O(7)	2.3+3(7) 2 538(7)	Cd(2)-V(3)	2.750(7)
O(4A) Cd(1) O(9)	2.550(7)	O(4A) Cd(1) O(10)	2.201(0) 06 1(2)
O(4A) Cd(1) O(12A)	109.3(2)	O(4A) Cd(1) - O(10)	20.1(3) 20.2(2)
O(4A)-Cu(1)-O(12A)	90.3(2)	O(4A)-Cu(1)-IN(2D)	07.0(3)

Table S1. Selected bond lengths (Å) and angles (°) of compounds 1-7.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2013

O(4A)-Cd(1)-O(11A)	100 6(2)	O(8)-Cd(1)-O(10)	79 4(3)	
O(8)-Cd(1)-O(11A)	89.4(3)	O(8)-Cd(1)-O(12A)	98.2(2)	
O(3A)-Cd(2)-O(5)	88.2(3)	O(3A)-Cd(2)-O(6)	138.6(2)	
O(8)-Cd(1)-N(2B)	86.0(3)	O(3A)-Cd(2)-O(7)	88.9(3)	
O(3A)-Cd(2)-O(9)	103.7(2)	O(3A)-Cd(2)-N(1)	123.9(3)	
O(5)-Cd(2)-O(7)	90.3(2)	O(5)-Cd(2)-O(9)	85.7(2)	
O(5)-Cd(2)-O(6)	54.3(2)	O(5)-Cd(2)-N(1)	147.1(3)	
		7		
Zn(1)-O(1')	1.867(16)	Zn(1)-N(1)	2.043(5)	
O(1')-Zn(1)-O(1'A)	76.7(9)	N(1)-Zn(1)-N(1A)	97.9(3)	
O(1')-Zn(1)-N(1)	103.9(5)	O(1')-Zn(1)-N(1A)	142.2(5)	

^{*a*} Symmetry codes: **1**, A, x, -y+3/2, z-1/2; B, -x, -y+2, -z+1; C, -x+1, -y+2, -z+1; **2**, A, x, -y+1/2, z-1/2; B, -x+1, -y+1, -z; C, -x+2, -y+1, -z; **3**, A, x-1/2, -y+1/2, -z+2; B, x, -y-1/2, z+1/2; **4**, A, x, y, -z+3/2; B, -x+3, y+1/2, z; C, x, -y+3/2, -z+2; **5**, A, x+1, y, z; B, x, -y+1/2, z-1/2; **6**, A, x-1, y, z; B, x, -y+1/2, z+1/2; **7**, A, -x, y, -z+1/2.

D-H···A	d(D···A)∕Å	<dha th="" °<=""></dha>				
	1					
N2-H2A…O7	2.761	150.99				
$N2-H2B\cdotsO3^{1}$	2.827	136.32				
N2'-H2'B…O3' ⁱ	2.726	162.99				
O7-H18C…N2'	3.150	143.72				
	2					
N1-H1A···O6 ¹	2.974	158.91				
N1-H1B···O3 ⁱⁱ	2.928	142.38				
	3					
O5-H5…O2 ¹	2.611	132.28				
	4					
O5-H5A···O3 ¹	2.748	161.21				
O5-H5A…O4' ⁱ	2.945	146.52				
O7-H7B…O2	2.722	169.70				
	5					
01-H1…012 ¹	2.758	159.51				
07-H7A…O3 ⁱⁱ	2.826	153.70				
07-H7B···O5 ¹¹¹	2.753	153.21				
O8-H8A…O11 ^{iv}	2.803	177.19				
O8-H8BO16 ^v	2.715	176.95				
013-H13····015 ^{vi}	2.587	171.54				
O15-H15A…O10 ^{vii}	2.840	166.96				
015-H15B…01 ^{viii}	2.848	166.45				
016-H16A…O9 ^{ix}	2.968	174.89				
O16-H16B…O14 ^x	2.911	174.91				
6						
01-H1A…012	2.673	158.40				
07-H7A…O3 ¹¹	2.753	154.55				
07-H7B···O5 ⁱⁱⁱ	2.705	152.86				
O8-H8A…O11 [™]	2.809	174.95				
O8-H8B…O16 ^v	2.689	175.20				
O13-H13····O15 ^{v1}	2.546	168.99				
015-H15A…01 ^{vii}	2.819	165.89				
$O15-H15B\cdots O10^{vin}$	2.772	166.27				
016-H16A09 ^{ix}	2.874	175.90				
$O16-H16B\cdots O14^{x}$	2.859	176.43				
7						
O4-H4…O5	2.567	161.71				
O4'-H4'…O5	2.825	149.67				
05-H5C···O2 ¹	2.741	156.45				
O5-H5D····O4 ⁱⁱ	2.727	141.34				

Table S2. The bond geometries of the hydrogen bonding interactions in compounds1-7.

Symmetry codes: For **1**, i, x, -y+3/2, z-1/2; ii, x, -y+3/2, z-1/2. For **2**, i, -x+1, -y+1, -z+1; ii, -x, y+1/2, -z+3/2. For **3**, i, x, -y+1/2, z-1/2. For **4**, i, -x+1, y-1/2, z. For **5**, i, x, -y+1/2, z-1/2; ii, -x+1, -y, -z; iii, -x+2, -y, -z; iv, -x+2, -y+1, -z; v, x+1, y, z; vi, -x+1, y-1/2, -z+1/2; vii, x-1, y, z; viii, x, -y+1/2, z+1/2; ix, -x+1, -y+1, -z; x, -x+1, y+1/2, -z+1/2; For **6**, i, x, -y+1/2, z-1/2; ii, -x+1, -y+1, -z+1; iii, -x, -y+1, -z+1; iv, -x, -y, -z+1; v, x-1, -y+1/2, z-1/2; vi, -x+1, y-1/2, -z+1/2; vii, x, -y+3/2, z-1/2; viii, x+1, y+1, z; xi, -x+1, y+1/2, -z+3/2; x, -x+1, -y+1, -z+1. For **7**, i, -x+1/2, y-1/2, -z+1/2; ii, -x+1/2; -z+1/2; viii, x+1/2, -z+1/2; viii, x+1/2, -z+1/2; viii, -x+1/2, -z+1/2; viii, -x+1/2; v

Figure S1. View of $\pi \cdots \pi$ interactions within the layer in compound **3**. Different interpenetrating units are illustrated in different colors.

Figure S2. (a) Left: A view of O-H···O interactions within the layer in compound **5**. Right: Perspective view of O-H···O interactions between the neighboring layers in compound **5** (different types of hydrogen bonds are illustrated in five colors). (b) Left: A view of O-H···O interactions within the layer in compound **6**. Right: Perspective view of O-H···O interactions between the neighboring layers in compound **6** (different types of hydrogen bonds are illustrated in five colors).

Figure S3. Powder XRD pattern of compounds 1-7. (a) simulated and (b) as-synthesized.

Figure S4. TGA data of compounds 1-7.

Figure S5. Gas sorption isotherms of the activated 1 (a) and 2 (b). Sorption and desorption data are show as filled and open symbols, respectively.

Figure S6. Normalized solid-state photoluminescence spectra of the ligands at room temperature.