Ionothermal synthesis and characterization of two cluster chalcohalides: $\left[\mathrm{Cr}_{7} \mathrm{~S}_{8} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right)_{14.5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1.5}\right] \mathrm{Cl}_{3} \cdot \mathbf{H}_{2} \mathrm{O}$ and $[E m i m]_{2}\left[\mathrm{Sn}_{2} \mathrm{As}_{2} \mathrm{~S}_{4}\left(\mathrm{~S}_{2}\right)_{2} \mathrm{Br}_{2.43} \mathrm{Cl}_{1.56}\right]$

Ke-Zhao Du ${ }^{\text {a,b }}$, Mei-Ling Feng ${ }^{\text {a }}$, Jian-Rong Li ${ }^{\text {a }}$, Xiao-Ying Huang ${ }^{\text {a, }, ~}$
${ }^{a}$ State Key Laboratory of Structural Chemistry, Fujian Institute of
Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R.
${ }^{b}$ Graduate School of the Chinese Academy of Sciences, Beijing 100049, P. R. China

Fax: +86 591 83793727; Tel: +86 591 83793727; E-mail: xyhuang@fjirsm.ac.cn

Supporting Information

1. Synthesis

All chemicals were commercially purchased and used without further purification. The ionic liquids $[\mathrm{Bmmim}] \mathrm{Cl},[\mathrm{Bmmim}]\left[\mathrm{BF}_{4}\right]$ and $[\mathrm{Emim}] \mathrm{Br}$ were purchased from Lanzhou Greenchem ILS (LICP, CAS, China). The other chemicals were purchased from the Chinese venders such as Sinopharm Chemcial Reagent Co. Ltd.

Compound 1 was obtained from an ionothermal reaction. A mixture of $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ powder (AR, $\left.0.136 \mathrm{~g}, 0.510 \mathrm{mmol}\right)$, S powder ($\mathrm{CP}, 0.098 \mathrm{~g}, 3.062 \mathrm{mmol}$), [Bmmim]Cl (>99\%, $1.130 \mathrm{~g}, 5.988 \mathrm{mmol}$), urea (AR, $0.121 \mathrm{~g}, 2.015 \mathrm{mmol}$) and $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(85 \%, 0.5 \mathrm{~mL}, 8.5 \mathrm{mmol})$ were sealed in a stainless steel reactor with a 28 mL Teflon liner and kept at $160{ }^{\circ} \mathrm{C}$ for 6 days, and then was cooled to room temperature. Black sheet-like crystals were obtained by washed with ethanol and air-dried. The crystals were selected by hand (stable in the air) in 43% yield (0.035 g) based on $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Elemental analysis of 1: calcd (\%): H 4.49, N 18.64; found: H 4.50, N 18.91. The [Bmmim$] \mathrm{Cl}$ was necessary for obtaining 1, though it did not enter the final structure of $\mathbf{1}$. Replacing it with $4 \mathrm{~mL} \mathrm{NH} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(25 \sim 28 \%)$ resulted in indefinite black powders, whereas replacing it with $\left[\mathrm{Bmmim}^{2}\right]\left[\mathrm{BF}_{4}\right]$ (>99\%) resulted in $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{CrF}_{6}$ (Figure S1). ${ }^{1}$

Compound 2 was obtained from a mixture of Sn powder ($>99.5 \%, 0.078 \mathrm{~g}, 0.65$ $\mathrm{mmol})$, S powder (CP, $0.064 \mathrm{~g}, 2.00 \mathrm{mmol}$), [Emim]Br (>99\%, $1.32 \mathrm{~g}, 6.91 \mathrm{mmol})$,
$\mathrm{As}_{2} \mathrm{~S}_{2}$ powder ($\mathrm{CP}, 0.130 \mathrm{~g}, 0.61 \mathrm{mmol}$), AlCl_{3} powder (AR, $0.131 \mathrm{~g}, 0.98 \mathrm{mmol}$), $\mathrm{EuCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ powder $(>99 \%, 0.177 \mathrm{~g}, 0.48 \mathrm{mmol})$ and thiourea powder (AR, 0.058 g , 0.76 mmol) were sealed in a stainless steel reactor with a 28 mL Teflon liner and kept at $160{ }^{\circ} \mathrm{C}$ for 8 days, and then was cooled to room temperature. Red block-like crystals were obtained by washed with ethanol and air-dried. The crystals were selected by hand (stable in the air) in 33% yield $(0.093 \mathrm{~g})$ based on $\mathrm{As}_{2} \mathrm{~S}_{2}$. Elemental analysis calcd (\%) of 2: C 12.92, H 1.99, N 5.02 ; found: C 12.90 , H $2.01, \mathrm{~N} 5.01$. $\mathrm{EuCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and AlCl_{3} might form the binary $\mathrm{EuCl}_{3}-\mathrm{AlCl}_{3}$ lewis acid, ${ }^{2}$ and Br^{-}is lewis base. When the lewis acid is excessive, the ionic liquid system is acidic which is in favour of the synthesis and crystallization of cationic cluster chalcohalides. ${ }^{3,4}$ When the ionic liquid containing Br^{-}or Cl^{-}anion is excessive, the system is alkaline which is in favour of the synthesis and crystallization of anionic cluster chalcohalide of 2 .

Figure S1. The PXRD patterns of the products obtained by replacing the $[\mathrm{Bmmim}] \mathrm{Cl}$ with $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(25 \sim 28 \%)$ (a) and $[\mathrm{Bmmim}]\left[\mathrm{BF}_{4}\right]$ (b), respectively, in the synthesis of $\mathbf{1}$.

2. Crystal Structure

The intensity data were collected on an Oxford Xcalibur Eos CCD diffractometer with graphite-monochromated $\operatorname{Mo} K \alpha$ radiation $(\lambda=0.71073 \AA)$ at room temperature. The data were corrected for Lorentz and Polarization effects as well as for absorption. The structure was solved by direct methods and refined by full-matrix least-squares cycles in SHELX-97. ${ }^{5}$ The selected bond geometries and hydrogen bonds data are listed in Table S1-S4. The empirical formulae were confirmed by element analyses (EA) results and energy-dispersive X -ray spectroscopy (EDS).

In the asymmetric unit of $\mathbf{1}$ there are three and half of crystallographically independent Cr^{3+} ions, four S^{2-}, one Cl^{-}anions, $1.5 \mathrm{H}_{2} \mathrm{O}, 7.25 \mathrm{NH}_{3}$ as ligands and 1.5 Cl^{-}as counterions and 0.5 lattice water molecule. $\mathrm{The} \mathrm{Cr}(1)^{3+}$ ion are surrounded by six $\mu_{3}-\mathrm{S}^{2-}$ anions, and the $\mathrm{Cr}(3)^{3+}$ ion are surrounded by three $\mu_{3}-\mathrm{S}^{2-}$ anions and three terminal NH_{3} molecules. While the $\mathrm{Cr}(2)^{3+}$ and $\mathrm{Cr}(4)^{3+}$ ions coordinate to three $\mu_{3}-\mathrm{S}^{2-}$ anions, two terminal NH_{3} and one terminal $\mathrm{Cl} / \mathrm{H}_{2} \mathrm{O}\left(\mathrm{NH}_{3} / \mathrm{Cl}\right.$ for $\left.\mathrm{Cr}(4)\right)$.The occupancy ratios of $\mathrm{Cl} 1 \mathrm{~B} / \mathrm{O} 1$ and $\mathrm{Cl} 1 / \mathrm{N} 1 \mathrm{~B}$ were refined to be $0.25 / 0.75$ and $0.75 / 0.25$, respectively. There is one crystallographically independent Sn^{4+} ion, one As^{3+} ion, four S atom, $1.22 \mathrm{Br}^{-}, 0.78 \mathrm{Cl}^{-}$and one Emim^{+}cation in the asymmetric unit of $\mathbf{2}$. The occupancy ratios of terminal atoms $\mathrm{Br} 1 / \mathrm{Cl} 1$ and $\mathrm{Br} 2 / \mathrm{C} 12$ were refined to be $0.556(2) / 0.440$ and $0.661(2) / 0.340$, respectively.

CCDC-923296 and 923287 contains the supplementary crystallographic data of the crystal $\mathbf{1}$ of $\mathbf{2}$. The data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK.

Table S1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for compound 1.

$\mathrm{Cr}(1)-\mathrm{S}(1)$	$2.4002(8)$	$\mathrm{Cr}(3)-\mathrm{N}(4)$	$2.115(2)$
$\mathrm{Cr}(1)-\mathrm{S}(1) \# 1$	$2.4002(8)$	$\mathrm{Cr}(3)-\mathrm{N}(3)$	$2.1241(19)$
$\mathrm{Cr}(1)-\mathrm{S}(3) \# 1$	$2.4132(8)$	$\mathrm{Cr}(3)-\mathrm{S}(1)$	$2.3578(7)$
$\mathrm{Cr}(1)-\mathrm{S}(3)$	$2.4132(8)$	$\mathrm{Cr}(3)-\mathrm{S}(4) \# 1$	$2.3608(8)$
$\mathrm{Cr}(1)-\mathrm{S}(4)$	$2.4266(6)$	$\mathrm{Cr}(3)-\mathrm{S}(2)$	$2.3962(8)$
$\mathrm{Cr}(1)-\mathrm{S}(4) \# 1$	$2.4266(6)$	$\mathrm{Cr}(4)-\mathrm{N}(1 \mathrm{~B})$	$2.102(18)$
$\mathrm{Cr}(2)-\mathrm{N}(1)$	$2.123(2)$	$\mathrm{Cr}(4)-\mathrm{N}(7)$	$2.134(2)$
$\mathrm{Cr}(2)-\mathrm{N}(2)$	$2.146(2)$	$\mathrm{Cr}(4)-\mathrm{N}(6)$	$2.142(2)$
$\mathrm{Cr}(2)-\mathrm{O}(1)$	$2.155(5)$	$\mathrm{Cr}(4)-\mathrm{S}(1)$	$2.3518(8)$
$\mathrm{Cr}(2)-\mathrm{S}(4) \# 1$	$2.3558(8)$	$\mathrm{Cr}(4)-\mathrm{S}(3)$	$2.3687(8)$
$\mathrm{Cr}(2)-\mathrm{S}(3)$	$2.3600(7)$	$\mathrm{Cr}(4)-\mathrm{S}(2)$	$2.3803(7)$
$\mathrm{Cr}(2)-\mathrm{S}(2)$	$2.3713(8)$	$\mathrm{Cr}(4)-\mathrm{Cl}(1)$	$2.4708(14)$
$\mathrm{Cr}(2)-\mathrm{Cl}(1 \mathrm{~B})$	$2.483(5)$	$\mathrm{S}(4)-\mathrm{Cr}(2) \# 1$	$2.3558(8)$
$\mathrm{Cr}(3)-\mathrm{N}(5)$	$2.107(2)$	$\mathrm{S}(4)-\mathrm{Cr}(3) \# 1$	$2.3608(8)$
$\mathrm{S}(1)-\mathrm{Cr}(1)-\mathrm{S}(1) \# 1$	$91.39(4)$	$\mathrm{N}(5)-\mathrm{Cr}(3)-\mathrm{S}(4) \# 1$	$177.98(7)$
$\mathrm{S}(1)-\mathrm{Cr}(1)-\mathrm{S}(3) \# 1$	$178.47(3)$	$\mathrm{N}(4)-\mathrm{Cr}(3)-\mathrm{S}(4) \# 1$	$90.09(7)$
$\mathrm{S}(1) \# 1-\mathrm{Cr}(1)-\mathrm{S}(3) \# 1$	$87.25(2)$	$\mathrm{N}(3)-\mathrm{Cr}(3)-\mathrm{S}(4) \# 1$	$91.93(6)$
$\mathrm{S}(1)-\mathrm{Cr}(1)-\mathrm{S}(3)$	$87.25(2)$	$\mathrm{S}(1)-\mathrm{Cr}(3)-\mathrm{S}(4) \# 1$	$91.42(3)$

S(1)\#1-Cr(1)-S(3)	178.47(3)	$\mathrm{N}(5)-\mathrm{Cr}(3)-\mathrm{S}(2)$	92.78(7)
$\mathrm{S}(3) \# 1-\mathrm{Cr}(1)-\mathrm{S}(3)$	94.11(4)	$\mathrm{N}(4)-\mathrm{Cr}(3)-\mathrm{S}(2)$	178.79(7)
$\mathrm{S}(1)-\mathrm{Cr}(1)-\mathrm{S}(4)$	91.58(2)	$\mathrm{N}(3)-\mathrm{Cr}(3)-\mathrm{S}(2)$	94.10(7)
$\mathrm{S}(1) \# 1-\mathrm{Cr}(1)-\mathrm{S}(4)$	88.81(2)	$\mathrm{S}(1)-\mathrm{Cr}(3)-\mathrm{S}(2)$	89.56(3)
$\mathrm{S}(3) \# 1-\mathrm{Cr}(1)-\mathrm{S}(4)$	87.67(2)	$\mathrm{S}(4) \# 1-\mathrm{Cr}(3)-\mathrm{S}(2)$	88.94(3)
$\mathrm{S}(3)-\mathrm{Cr}(1)-\mathrm{S}(4)$	91.94(2)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{Cr}(4)-\mathrm{N}(7)$	80.3(4)
$\mathrm{S}(1)-\mathrm{Cr}(1)-\mathrm{S}(4) \# 1$	88.81(2)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{Cr}(4)-\mathrm{N}(6)$	77.3(5)
$\mathrm{S}(1) \# 1-\mathrm{Cr}(1)-\mathrm{S}(4) \# 1$	91.58(2)	$\mathrm{N}(7)-\mathrm{Cr}(4)-\mathrm{N}(6)$	85.23(9)
$\mathrm{S}(3) \# 1-\mathrm{Cr}(1)-\mathrm{S}(4) \# 1$	91.94(2)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{Cr}(4)-\mathrm{S}(1)$	100.5(5)
$\mathrm{S}(3)-\mathrm{Cr}(1)-\mathrm{S}(4) \# 1$	87.67(2)	$\mathrm{N}(7)-\mathrm{Cr}(4)-\mathrm{S}(1)$	90.13(7)
$\mathrm{S}(4)-\mathrm{Cr}(1)-\mathrm{S}(4) \# 1$	179.44(4)	$\mathrm{N}(6)-\mathrm{Cr}(4)-\mathrm{S}(1)$	175.15(6)
$\mathrm{N}(1)-\mathrm{Cr}(2)-\mathrm{N}(2)$	84.88(10)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{Cr}(4)-\mathrm{S}(3)$	165.8(4)
$\mathrm{N}(1)-\mathrm{Cr}(2)-\mathrm{O}(1)$	86.23(15)	$\mathrm{N}(7)-\mathrm{Cr}(4)-\mathrm{S}(3)$	89.63(7)
$\mathrm{N}(2)-\mathrm{Cr}(2)-\mathrm{O}(1)$	85.35(18)	$\mathrm{N}(6)-\mathrm{Cr}(4)-\mathrm{S}(3)$	91.94(8)
$\mathrm{N}(1)-\mathrm{Cr}(2)-\mathrm{S}(4) \# 1$	90.42(7)	$\mathrm{S}(1)-\mathrm{Cr}(4)-\mathrm{S}(3)$	89.42(3)
$\mathrm{N}(2)-\mathrm{Cr}(2)-\mathrm{S}(4) \# 1$	175.28(7)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{Cr}(4)-\mathrm{S}(2)$	101.5(4)
$\mathrm{O}(1)-\mathrm{Cr}(2)-\mathrm{S}(4) \# 1$	93.94(17)	$\mathrm{N}(7)-\mathrm{Cr}(4)-\mathrm{S}(2)$	178.07(8)
$\mathrm{N}(1)-\mathrm{Cr}(2)-\mathrm{S}(3)$	90.79(7)	$\mathrm{N}(6)-\mathrm{Cr}(4)-\mathrm{S}(2)$	94.59(6)
$\mathrm{N}(2)-\mathrm{Cr}(2)-\mathrm{S}(3)$	89.88(6)	$\mathrm{S}(1)-\mathrm{Cr}(4)-\mathrm{S}(2)$	90.09(3)
$\mathrm{O}(1)-\mathrm{Cr}(2)-\mathrm{S}(3)$	174.58(16)	$\mathrm{S}(3)-\mathrm{Cr}(4)-\mathrm{S}(2)$	88.45(3)
$\mathrm{S}(4) \# 1-\mathrm{Cr}(2)-\mathrm{S}(3)$	90.60(3)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{Cr}(4)-\mathrm{Cl}(1)$	16.9(3)
$\mathrm{N}(1)-\mathrm{Cr}(2)-\mathrm{S}(2)$	179.66(7)	$\mathrm{N}(7)-\mathrm{Cr}(4)-\mathrm{Cl}(1)$	93.64(8)
$\mathrm{N}(2)-\mathrm{Cr}(2)-\mathrm{S}(2)$	95.04(7)	$\mathrm{N}(6)-\mathrm{Cr}(4)-\mathrm{Cl}(1)$	88.59(8)
$\mathrm{O}(1)-\mathrm{Cr}(2)-\mathrm{S}(2)$	94.10(14)	$\mathrm{S}(1)-\mathrm{Cr}(4)-\mathrm{Cl}(1)$	90.31(4)
$\mathrm{S}(4) \# 1-\mathrm{Cr}(2)-\mathrm{S}(2)$	89.66(3)	$\mathrm{S}(3)-\mathrm{Cr}(4)-\mathrm{Cl}(1)$	176.71(4)
$\mathrm{S}(3)-\mathrm{Cr}(2)-\mathrm{S}(2)$	88.87(3)	$\mathrm{S}(2)-\mathrm{Cr}(4)-\mathrm{Cl}(1)$	88.27(4)
$\mathrm{N}(1)-\mathrm{Cr}(2)-\mathrm{Cl}(1 \mathrm{~B})$	98.67(14)	$\mathrm{Cr}(4)-\mathrm{S}(1)-\mathrm{Cr}(3)$	90.97(3)
$\mathrm{N}(2)-\mathrm{Cr}(2)-\mathrm{Cl}(1 \mathrm{~B})$	90.90(14)	$\mathrm{Cr}(4)-\mathrm{S}(1)-\mathrm{Cr}(1)$	92.02(3)
$\mathrm{O}(1)-\mathrm{Cr}(2)-\mathrm{Cl}(1 \mathrm{~B})$	13.2(2)	$\mathrm{Cr}(3)-\mathrm{S}(1)-\mathrm{Cr}(1)$	90.20(3)
$\mathrm{S}(4) \# 1-\mathrm{Cr}(2)-\mathrm{Cl}(1 \mathrm{~B})$	89.38(13)	$\mathrm{Cr}(2)-\mathrm{S}(2)-\mathrm{Cr}(4)$	91.05(3)
$\mathrm{S}(3)-\mathrm{Cr}(2)-\mathrm{Cl}(1 \mathrm{~B})$	170.54(13)	$\mathrm{Cr}(2)-\mathrm{S}(2)-\mathrm{Cr}(3)$	90.07(3)
$\mathrm{S}(2)-\mathrm{Cr}(2)-\mathrm{Cl}(1 \mathrm{~B})$	81.66(13)	$\mathrm{Cr}(4)-\mathrm{S}(2)-\mathrm{Cr}(3)$	89.36(3)
$\mathrm{N}(5)-\mathrm{Cr}(3)-\mathrm{N}(4)$	88.17(10)	$\mathrm{Cr}(2)-\mathrm{S}(3)-\mathrm{Cr}(4)$	91.62(3)
$\mathrm{N}(5)-\mathrm{Cr}(3)-\mathrm{N}(3)$	86.88(8)	$\mathrm{Cr}(2)-\mathrm{S}(3)-\mathrm{Cr}(1)$	90.95(3)
$\mathrm{N}(4)-\mathrm{Cr}(3)-\mathrm{N}(3)$	85.21(9)	$\mathrm{Cr}(4)-\mathrm{S}(3)-\mathrm{Cr}(1)$	91.29(3)
$\mathrm{N}(5)-\mathrm{Cr}(3)-\mathrm{S}(1)$	89.66(6)	$\mathrm{Cr}(2) \# 1-\mathrm{S}(4)-\mathrm{Cr}(3) \# 1$	91.31(3)
$\mathrm{N}(4)-\mathrm{Cr}(3)-\mathrm{S}(1)$	91.19(6)	$\mathrm{Cr}(2) \# 1-\mathrm{S}(4)-\mathrm{Cr}(1)$	90.72(3)
$\mathrm{N}(3)-\mathrm{Cr}(3)-\mathrm{S}(1)$	175.08(7)	$\mathrm{Cr}(3) \# 1-\mathrm{S}(4)-\mathrm{Cr}(1)$	89.49(3)

Symmetry transformations used to generate equivalent atoms: \#1-x+1, $y,-z+1 / 2$
Table 2. Selected bond lengths ((\AA) and angles $\left({ }^{\circ}\right)$ for compound 2.

$\mathrm{Sn}(1)-\mathrm{Cl}(1)$	$2.394(14)$	$\mathrm{S}(2)-\mathrm{Sn}(1) \# 1$	$2.6340(10)$
$\mathrm{Sn}(1)-\mathrm{Cl}(2)$	$2.473(15)$	$\mathrm{S}(4)-\mathrm{As}(1) \# 1$	$2.2128(13)$

Sn(1)-S(4)	2.4904(12)	$\mathrm{N}(1)-\mathrm{C}(3)$	1.287(7)
$\mathrm{Sn}(1)-\mathrm{S}(1)$	2.4944(12)	$\mathrm{N}(1)-\mathrm{C}(1)$	1.356(7)
$\mathrm{Sn}(1)-\mathrm{Br}(2)$	2.591(3)	$\mathrm{N}(1)-\mathrm{C}(4)$	1.464(6)
$\mathrm{Sn}(1)-\mathrm{Br}(1)$	2.604(4)	$\mathrm{N}(2)-\mathrm{C}(2)$	1.301(11)
Sn(1)-S(2)\#1	2.6340 (10)	$\mathrm{N}(2)-\mathrm{C}(3)$	1.302(9)
Sn(1)-S(2)	2.6434(10)	$\mathrm{N}(2)-\mathrm{C}(5 \mathrm{~B})$	1.524(10)
As(1)-S(1)	2.2098(13)	$\mathrm{N}(2)-\mathrm{C}(5)$	1.536(11)
As(1)-S(4)\#1	2.2128(13)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.328(10)
As(1)-S(3)	2.2732(13)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.510(9)
$\mathrm{S}(2)-\mathrm{S}(3)$	2.0346(16)	$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	1.501(9)
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{Cl}(2)$	87.0(6)	$\mathrm{Br}(1)-\mathrm{Sn}(1)-\mathrm{S}(2)$	89.15(14)
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{S}(4)$	90.9(4)	S(2)\#1-Sn(1)-S(2)	87.36(3)
$\mathrm{Cl}(2)-\mathrm{Sn}(1)-\mathrm{S}(4)$	99.3(4)	S(1)-As(1)-S(4)\#1	106.28(5)
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{S}(1)$	94.6(4)	$\mathrm{S}(1)-\mathrm{As}(1)-\mathrm{S}(3)$	99.27(5)
$\mathrm{Cl}(2)-\mathrm{Sn}(1)-\mathrm{S}(1)$	84.6(4)	$\mathrm{S}(4) \# 1-\mathrm{As}(1)-\mathrm{S}(3)$	100.30(5)
$\mathrm{S}(4)-\mathrm{Sn}(1)-\mathrm{S}(1)$	173.44(4)	$\mathrm{As}(1)-\mathrm{S}(1)-\mathrm{Sn}(1)$	111.23(5)
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{Br}(2)$	93.3(5)	S(3)-S(2)-Sn(1)\#1	107.71(5)
$\mathrm{Cl}(2)-\mathrm{Sn}(1)-\mathrm{Br}(2)$	7.3(3)	$\mathrm{S}(3)-\mathrm{S}(2)-\mathrm{Sn}(1)$	106.18(5)
$\mathrm{S}(4)-\mathrm{Sn}(1)-\mathrm{Br}(2)$	95.62(7)	$\mathrm{Sn}(1) \# 1-\mathrm{S}(2)-\mathrm{Sn}(1)$	92.64(3)
$\mathrm{S}(1)-\mathrm{Sn}(1)-\operatorname{Br}(2)$	87.70(7)	$\mathrm{S}(2)-\mathrm{S}(3)-\mathrm{As}(1)$	103.18(6)
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{Br}(1)$	3.4(6)	As(1)\#1-S(4)-Sn(1)	110.16(5)
$\mathrm{Cl}(2)-\mathrm{Sn}(1)-\mathrm{Br}(1)$	88.5(3)	$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(1)$	108.1(6)
$\mathrm{S}(4)-\mathrm{Sn}(1)-\mathrm{Br}(1)$	87.69(13)	$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(4)$	126.9(6)
$\mathrm{S}(1)-\mathrm{Sn}(1)-\operatorname{Br}(1)$	97.70(13)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	125.0(5)
$\operatorname{Br}(2)-\mathrm{Sn}(1)-\mathrm{Br}(1)$	94.66(15)	$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$	107.2(7)
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{S}(2) \# 1$	177.0(5)	$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(5 \mathrm{~B})$	105.0(9)
$\mathrm{Cl}(2)-\mathrm{Sn}(1)-\mathrm{S}(2) \# 1$	95.1(3)	$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(5 \mathrm{~B})$	147.7(9)
S(4)-Sn(1)-S(2)\#1	90.97(4)	$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(5)$	144.3(10)
S(1)-Sn(1)-S(2)\#1	83.43(4)	$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(5)$	108.5(9)
$\operatorname{Br}(2)-\mathrm{Sn}(1)-\mathrm{S}(2) \# 1$	88.86(6)	$\mathrm{C}(5 \mathrm{~B})-\mathrm{N}(2)-\mathrm{C}(5)$	39.4(8)
$\operatorname{Br}(1)-\mathrm{Sn}(1)-\mathrm{S}(2) \# 1$	176.34(14)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	104.8(7)
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{S}(2)$	90.4(5)	$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	109.9(8)
$\mathrm{Cl}(2)-\mathrm{Sn}(1)-\mathrm{S}(2)$	174.1(3)	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{N}(2)$	109.9(7)
$\mathrm{S}(4)-\mathrm{Sn}(1)-\mathrm{S}(2)$	86.00(4)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(2)$	111.4(10)
$\mathrm{S}(1)-\mathrm{Sn}(1)-\mathrm{S}(2)$	90.33(4)	$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{N}(2)$	94.6(8)
$\operatorname{Br}(2)-\mathrm{Sn}(1)-\mathrm{S}(2)$	175.92(7)		

Symmetry transformations used to generate equivalent atoms: \#1 $-x+1,-y+1,-z+1$.

Table S3 Selected hydrogen bond data for compound 1.

$\mathrm{D}-\mathrm{H}---\mathrm{A}$	$d(\mathrm{D}-\mathrm{H})(\AA)$	$d(\mathrm{H}---A)(\AA)$	$d(\mathrm{D}---A)(\AA)$	$\mathrm{D}-\mathrm{H}---A\left(^{\circ}\right)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{D}) \ldots \mathrm{Cl}(2) \# 2$	0.82	2.78	$3.542(6)$	154.8
$\mathrm{~N}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{G}) \ldots \mathrm{O}(2) \# 3$	0.89	2.18	$3.069(18)$	173.1

$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{D}) \ldots \mathrm{S}(1) \# 2$	0.82	3.01	3.831(11)	179.2
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{E}) \ldots \mathrm{N}(2)$	0.82	2.51	3.258(10)	152.8
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{Cl}(3)$	0.89	2.70	3.461(4)	143.6
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A}) . . . \mathrm{Cl}(3) \# 1$	0.89	2.89	3.627(4)	141.2
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{Cl}(2) \# 2$	0.89	2.81	3.667(2)	162.1
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{C}) \ldots \mathrm{Cl}(1) \# 4$	0.89	2.93	3.654(3)	140.2
$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}(2)$	0.89	2.42	3.258(10)	157.3
$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{Cl}(3)$	0.89	2.82	3.632(4)	152.0
$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~B}) \ldots \mathrm{Cl}(2) \# 5$	0.89	2.68	3.526(3)	158.3
$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{C}) \ldots \mathrm{Cl}(2) \# 2$	0.89	2.57	3.419(2)	160.8
$\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~A}) \ldots \mathrm{Cl}(2)$	0.89	2.94	$3.720(2)$	147.0
N(4)-H(4B)...S(1)\#1	0.89	2.71	$3.376(2)$	132.6
$\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~B}) \ldots \mathrm{Cl}(3) \# 6$	0.89	2.92	3.614(4)	135.8
$\mathrm{N}(4)-\mathrm{H}(4 \mathrm{C}) \ldots \mathrm{Cl}(2) \# 7$	0.89	2.67	3.521(2)	160.1
$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A}) \ldots \mathrm{Cl}(2)$	0.89	2.53	3.416(2)	171.4
$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~B}) . . \mathrm{S}(2) \# 5$	0.89	2.78	3.448(2)	133.3
$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~B}) . . \mathrm{Cl}(1 \mathrm{~B}) \# 5$	0.89	2.80	3.517(6)	138.9
$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~B}) \ldots \mathrm{Cl}(1)$	0.89	2.96	3.358(3)	109.4
$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{C}) \ldots \mathrm{O}(2) \# 8$	0.89	2.63	$3.360(11)$	139.9
$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{C}) \ldots \mathrm{Cl}(3) \# 8$	0.89	2.92	3.624(4)	137.0
$\mathrm{N}(3)-\mathrm{H}(6 \mathrm{~A}) \ldots \mathrm{Cl}(2) \# 7$	0.89	2.82	3.598(2)	147.0
$\mathrm{N}(3)-\mathrm{H}(6 \mathrm{~B}) \ldots \mathrm{Cl}(1) \# 5$	0.89	2.77	3.537(2)	144.8
$\mathrm{N}(3)-\mathrm{H}(6 \mathrm{~B}) \ldots \mathrm{Cl}(1 \mathrm{~B})$	0.89	2.80	$3.353(6)$	121.4
$\mathrm{N}(3)-\mathrm{H}(6 \mathrm{C}) \ldots . \mathrm{Cl}(2)$	0.89	2.62	3.491(2)	165.0
$\mathrm{N}(7)-\mathrm{H}(7 \mathrm{~A}) \ldots \mathrm{Cl}(1) \# 9$	0.89	2.77	3.643(3)	166.8
$\mathrm{N}(7)-\mathrm{H}(7 \mathrm{~B}) . . . \mathrm{S}(4)$	0.89	2.82	3.473(3)	131.5
$\mathrm{N}(7)-\mathrm{H}(7 \mathrm{C}) \ldots \mathrm{O}(2) \# 3$	0.89	2.52	$3.305(10)$	147.9
$\mathrm{N}(7)-\mathrm{H}(7 \mathrm{C}) \ldots \mathrm{Cl}(3) \# 3$	0.89	2.96	$3.727(5)$	145.0
$\mathrm{N}(6)-\mathrm{H}(8 \mathrm{~A}) \ldots \mathrm{Cl}(1) \# 9$	0.89	2.91	3.753(3)	158.4
$\mathrm{N}(6)-\mathrm{H}(8 \mathrm{~B}) \ldots \mathrm{O}(2) \# 3$	0.89	2.64	3.424(11)	148.0
$\mathrm{N}(6)-\mathrm{H}(8 \mathrm{~B}) \ldots \mathrm{Cl}(3) \# 3$	0.89	2.66	3.503(4)	158.4
$\mathrm{N}(6)-\mathrm{H}(8 \mathrm{C}) \ldots \mathrm{Cl}(2) \# 5$	0.89	2.72	3.563(2)	158.6

Symmetry transformations used to generate equivalent atoms: \#1 $-x+1, y,-z+1 / 2 ; \# 2 x, y+1, z ; \# 3$ $-x+1 / 2, y-1 / 2,-z+1 / 2 ; \# 4 x+1 / 2, y+1 / 2, z ; \# 5-x+1 / 2,-y+1 / 2,-z ; \# 6-x+1, y-1,-z+1 / 2 ; \# 7-x+1,-y,-z ;$ \#8 $x, y-1, z ; \# 9-x+1 / 2, y+1 / 2,-z+1 / 2$.

Table S4. Selected hydrogen bond data for compound 2.

D-H---A	$d(\mathrm{D}-\mathrm{H})(\AA)$	$d(\mathrm{H}---A)(\AA)$	$d(\mathrm{D}---A)(\AA)$	$\mathrm{D}-\mathrm{H}---A\left(^{\circ}\right)$
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{Cl}(2) \# 2$	0.93	2.83	$3.673(16)$	151.8
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{Br}(2) \# 2$	0.93	3.08	$3.906(8)$	148.7
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A}) \ldots \mathrm{Cl}(1) \# 3$	0.93	2.85	$3.62(2)$	140.0
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A}) \ldots \mathrm{Br}(1) \# 3$	0.93	2.96	$3.728(9)$	140.9
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{S}(3) \# 4$	0.93	2.98	$3.908(8)$	172.9
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{C}) \ldots \mathrm{S}(3) \# 1$	0.96	2.92	$3.735(14)$	142.9

$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B}) \ldots \mathrm{S}(4) \# 5$	0.96	3.01	$3.844(13)$	146.5
$\mathrm{C}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{D}) \ldots \mathrm{S}(4) \# 6$	0.96	2.86	$3.482(11)$	123.2
$\mathrm{C}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{E}) \ldots \mathrm{S}(3) \# 1$	0.96	3.02	$3.882(19)$	150.0

Symmetry transformations used to generate equivalent atoms: \#1 - $x+1,-y+1,-z+1$; \#2 $-x+1, y-1 / 2,-z+3 / 2$; \#3 $x-1 / 2, y,-z+3 / 2$; \#4 $x-1 / 2,-y+1 / 2,-z+1 ; \# 5-x+1 / 2, y-1 / 2, z ; \# 6 x-1 / 2,-y+3 / 2,-z+1$.

Figure S2. The H-bond networks in 1 (a) and 2 (b).

3. Physical measurements

All chemicals were used as purchased without further purification. Microprobe elemental analyses were performed by using a field-emission scanning electron microscope (FESEM, JSM6700F) equipped with an energy-dispersive X-ray spectroscope (EDS, Oxford INCA), whereas element analyses of C, H and N were performed on a German Elementar Vario EL III instrument. The infrared spectrum was taken on a Magna 750 FTIR spectrometer with sample as KBr pellet in the range of $4000-450 \mathrm{~cm}^{-1}$. Powder X-ray diffraction (PXRD) pattern was recorded on a Miniflex II diffractometer at 30 kV and 15 mA using $\mathrm{Cu} K \alpha(1.54178 \AA$ Á), with a scan speed of $0.15 \% \mathrm{~min}$ at room temperature. The simulated PXRD pattern from single crystal data was produced using the PowderCell program. Thermoanalysis (TG) was carried out with a NETZSCH STA449F3 unit, at a heating rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$ under a nitrogen atmosphere. Optical diffuse reflectance spectrum was measured at room temperature with a Perkin-Elmer Lambda 900 UV/Vis spectrophotometer by using BaSO_{4} powder as 100% reflectance and the room-temperature optical absorption spectrum of the title compound was obtained from diffuse reflectance experiment ${ }^{6,7}$. The variable-temperature magnetic susceptibilities (2~230k) were measured with a Quantum Design PPMS 6000 magnetometer under an applied field of 5000 Oe with the crystalline powder samples kept in a capsule for weighing.

Figure S3. The PXRD patterns (red) are in good agreement with the simulated PXRD patterns (blue) for crystal structures of compounds $\mathbf{1}$ (b) and 2 (a).

Figure S4. The TG curves for compound $\mathbf{1}$ (a) and 2 (b).
The phase purity of $\mathbf{1}$ and 2 were confirmed PXRD (Figure S3). Thermal stabilities of $\mathbf{1}$ and $\mathbf{2}$ were studied by thermogravemtric analyses (TGA) on pure crystalline samples (9.252 mg for $\mathbf{1}$ and 5.733 mg for $\mathbf{2}$) in a NETZSCH STA449F3 unit and the TG curves are depicted in Figure S4. The TG curve of $\mathbf{1}$ indicates a weight loss of 4.14% from $25^{\circ} \mathrm{C}$ to $171^{\circ} \mathrm{C}$, attributed to the removal of $2.5 \mathrm{H}_{2} \mathrm{O}$ molecules per formula, consistent with the theoretical weight loss of 4.13%. Then $\mathbf{1}$ continues to lose a total weight of 31.57% from 171 to $730{ }^{\circ} \mathrm{C}$, attributed to the removal of NH_{3}, segmental S and Cl . Compound 2 was stable up to $200^{\circ} \mathrm{C}$, and then it decomposed with a weight loss of 94.56% from 200 to $840^{\circ} \mathrm{C}$ (Figure S7).

Figure S5 IR spectra of compound 1 (a) and 2 (b).

Figure S6 The EDS of compounds 1 (a) and 2 (b).

Figure S7 The PXRD patterns of the residues of $\mathbf{1}$ (a) and $\mathbf{2}$ (b) after TG. The residue of $\mathbf{1}$ after $750^{\circ} \mathrm{C}$ is comparable with that simulated from the single crystal X-ray data of $\mathrm{Cr}_{2} \mathrm{~S}_{3}$ (blue). The EDS of the residue of $\mathbf{1}$ (c) after $750^{\circ} \mathrm{C}$ and 2 (d) after $850^{\circ} \mathrm{C}$.

REFERENCES

1. Kenney, J. W.; Clymire, J. W.; Agnew, S. F., J. Am. Chem. Soc. 1995, 117, 1645-1646.
2. Murase, K. A.; Adachi, G.; Zissi, G. D.; Boghosian, S.; Papatheodorou, G. N., J. Non-Cryst. Solids 1994, 180, 88-90.
3. Zhang, Q.; Chung, I.; Jang, J. I.; Ketterson, J. B.; Kanatzidis, M. G., J. Am. Chem. Soc. 2009, 131, 9896-9897.
4. Biswas, K.; Zhang, Q. C.; Chung, I.; Song, J. H.; Androulakis, J.; Freeman, A. J.; Kanatzidis, M. G., J. Am. Chem. Soc. 2010, 132, 14760-14762.
5. Sheldrick, G. M., SHELXS97 and SHELXL97. University of Göttingen: Germany, 1997.
6. Wendlandt, W. W.; Hecht, H. G., Reflectance spectroscopy. Interscience Publishers: New York,, 1966; p viii, 298 p.
7. Li, J.; Chen, Z.; Wang, X. X.; Proserpio, D. M., J. Alloys Compd. 1997, 262, 28-33.
