Electronic Supplementary Material for CrystEngComm This Journal is (c) The Royal Society of Chemistry 2013

Heterometallic Coordination Polymers Based on dipepdide Schiff base

Cu(II) Metalloligand: Synthesis, Structures, and Magnetic Properties

Jinghong Zhang,^a Shaomin Cheng,^a Xiangfei Wang,^a Limin Yuan,^a Mingqiang Xue,^b Yang Wang^a and Wenlong Liu^{*a}

^aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China. E-mail: liuwl@yzu.edu.cn; Fax: +86 514 87975244; Tel: +86 514 87975290 ^bKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China.

Electronic Supporting Information

Page S2: Table S1 Selected bond lengths (Å) and angles (°) for complexes 1 -3

Page S4: Table S2 Hydrogen Bonds (Å, °) for 1-3.

Page S5: Fig. S1 View of the 3D supramolecular framework linked together by hydrogen bonding of 1.

Page S6: Fig. S2 Simulated and as-synthesized XRPD patterns of 1-3.

Page S7: Fig.S3 TG curves of complexes 1-3.

1					
Cu1-O1	1.878(3)	Cu1-N2	1.880(3)	Cu1-N1	1.934(3)
Cu1-O3	2.003(3)	Cu1-O6#2	2.611(4)	Ca1-O3	2.473(3)
Cal-O4	2.729(3)	Ca1-O4#1	2.444(3)	Ca1-O8	2.488(3)
Ca1-O9	2.420(3)	Ca1-O10	2.442(3)	Ca1-O11	2.392(4)
Ca1-O12	2.412(3)	Cu1Cu1#1	<mark>9.847(2)</mark>	N1-Cu1-O3	166.02(13)
O1-Cu1-N2	178.45(14)	O1-Cu1-N1	95.59(13)	N2-Cu1-N1	84.14(14)
O1-Cu1-O3	97.18(11)	N2-Cu1-O3	82.94(12)	O8-Ca1-O4	122.32(9)
O11-Ca1-O12	99.33(7)	O11-Ca1-O9	142.34(12)	O12-Ca1-O9	84.91(11)
O11-Ca1-O10	69.68(12)	O12-Ca1-O10	80.98(12)	O9-Ca1-O10	147.91(11)
O11-Ca1-O4#1	73.83(13)	O12-Ca1-O4#1	82.09(11)	O9-Ca1-O4#1	72.59(10)
O10-Ca1-O4#1	132.84(11)	O11-Ca1-O3	98.61(16)	O12-Ca1-O3	152.82(11)
O9-Ca1-O3	80.52(10)	O10-Ca1-O3	99.60(11)	O4#2-Ca1-O3	114.68(10)
O11-Ca1-O8	141.45(13)	O12-Ca1-O8	78.26(11)	O9-Ca1-O8	75.31(10)
O10-Ca1-O8	73.67(10)	O4#2-Ca1-O8	143.54(11)	O3-Ca1-O8	75.92(10)
O11-Ca1-O4	73.11(13)	O12-Ca1-O4	148.19(10)	O9-Ca1-O4	78.51(10)
O10-Ca1-O4	125.89(11)	O4#1-Ca1-O4	67.16(11)	O3-Ca1-O4	49.46(9)
2					
Cu1-O1	1.876(4)	Cu1-N2	1.884(5)	Cu1- N1	1.910(4)
Cu1-O3	1.955(4)	Sr1-O2#1	2.506(4)	Sr1-O4#2	2.523(4)
Sr1-O6#3	2.544(4)	Sr1 -O5#4	2.576(4)	Sr1 -09	2.601(4)
Sr1- O8	2.607(3)	Sr1- O3	2.647(4)	Sr1- O4	2.849(4)
01-Cu1-N2	177.60(17)	O1-Cu1-N1	95.89(17)	N2-Cu1-N1	95.8917
O1-Cu1-O3	97.02(15)	N2-Cu1-O3	84.63(17)	N1-Cu1-O3	166.83(17)
O2#1-Sr1-O4#2	93.56(12)	O2#1-Sr1-O6#3	76.65(12)	O4#2-Sr1-O6#3	89.77(12)
O2#1-Sr1-O5#4	159.12(12)	O4#2-Sr1-O5#4	83.98(11)	O6#3-Sr1-O5#4	82.59(12)
O2#1-Sr1-O9	79.35(11)	O4#2-Sr1-O9	171.35(11)	O6#3-Sr1-O9	83.82(11)
O5#4-Sr1-O9	100.87(11)	O2#1-Sr1-O8	60.92(12)	O4#2-Sr1-O8	78.17(12)
O6#3-Sr1-O8	134.60(12)	O5#4-Sr1-O8	137.77(12)	O9-Sr1-O8	102.27(11)
O2#1-Sr1-O3	126.36(11)	O4#2-Sr1-O3	115.01(11)	O6#3-Sr1-O3	142.00(11)
O5#4-Sr1-O3	72.61(12)	O9-Sr1-O3	73.45(11)	O8-Sr1-O3	80.83(11)
O2#1-Sr1-O4	128.89(12)	O4#2-Sr1-O4	67.46(13)	O6#3-Sr1-O4	144.81(11)
O5#4-Sr1-O4	69.12(12)	O9-Sr1-O4	120.89(10)	08-Sr1-O4	68.70(11)
000000	47.60(11)	Cu1Cu1#2	10.082(2)		

Table S1 Selected bond lengths (Å) and angles (°) for complexes $1-3^a$

3					
Cu1-O1	1.865(3)	Cu1-N2	1.883(4)	Cu1-N1	1.923(4)
Cu1-O3	1.985(3)	Cu1-O6#4	2.430(3)	Ba1-O4#1	2.714(3)
Ba1-O5#2	2.738(3)	Ba1-O7#3	2.774(4)	Ba1-O11	2.781(4)
Ba1-O10	2.798(4)	Ba1-O9	2.831(4)	Ba1-O3	2.893(3)
Ba1-O8	2.933(4)	Ba1-O4	2.949(4)	Cu1Cu1#1	10.341(2)
O1-Cu1-N2	178.08(18)	O1-Cu1-N1	95.48(15)	N2-Cu1-N1	84.52(16)
O1-Cu1-O3	95.67(14)	N2-Cu1-O3	84.03(15)	N1-Cu1-O3	165.71(15)
O1-Cu1-O6#4	93.97(15)	N2-Cu1-O6#4	87.91(15)	N1-Cu1-O6#4	101.04(15)
O3-Cu1-O6#4	87.07(14)	O4#1-Ba1-O5#	271.09(10)	O4#1-Ba1-O7#3 93.68(11	
O5#2-Ba1-O7#3	375.68(11)	O4#1-Ba1-O11	161.48(13)	O5#2-Ba1-O11	123.35(11)
O7#3-Ba1-O11	80.34(11)	O4#1-Ba1-O10	71.52(12)	O5#2-Ba1-O10	126.82(11)
O7#3-Ba1-O10	70.45(11)	O11-Ba1-O10	89.97(12)	O4#1-Ba1-O9	81.29(12)
O5#2-Ba1-O9	70.08(11)	O7#3-Ba1-O9	145.19(11)	O11-Ba1-O9	113.51(12)
O10-Ba1-O9	137.35(11)	O4#1-Ba1-O3	108.82(10)	O5#2-Ba1-O3	149.62(11)
O7#3-Ba1-O3	133.51(11)	O11-Ba1-O3	65.37(10)	O10-Ba1-O3	78.76(10)
O9-Ba1-O3	79.79(11)	O4#1-Ba1-O8	135.28(11)	O5#2-Ba1-O8	69.88(10)
O7#3-Ba1-O8	97.07(11)	O11-Ba1-O8	63.17(12)	O10-Ba1-O8	152.36(11)
O9-Ba1-O8	65.55(11)	O3-Ba1-O8	94.47(10)	O4#1-Ba1-O4	65.71(12)
O5#2-Ba1-O4	120.87(11)	O7#3-Ba1-O4	142.87(11)	O11-Ba1-O4	109.16(10)
O10-Ba1-O4	73.68(11)	O9-Ba1-O4	65.28(11)	O3-Ba1-O4	44.05(9)
O8-Ba1-O4	119.49(11)				

^aSymmetry codes, For 1: #1 -x+1, -y+2, -z+2; #2 -x+2, -y+2, -z+1; For 2: #1 x,-y+1/2,z+1/2; #2 -x+1,-y,-z+1; #3 x, y-1, z; #4 -x, -y+1, -z+1; #5 x, y+1, z; #6 x, -y+1/2, z-1/2. For 3: #1 -x+3, -y+2, -z+1; #2 x+1, y+1, z+1; #3 -x+2, -y+2, -z; #4 -x+1, -y+1, -z; #5 x-1, y-1, z-1.

10010 02 119 01080		pounu _, _, u			
D-HA	<i>r</i> (D-H)	r (HA)	r (DA)	α (DHA)	Symmetry operation
1					
O8-H8DO10	0.85	2.54	2.956(4)	112	
O8-H8CO1	0.85	1.89	2.733(4)	171	
O8-H8DO2	0.85	1.93	2.717(4)	154	x,y-1,z
O9-H9AO7	0.84	1.97	2.783(4)	163	- <i>x</i> +2,- <i>y</i> +2,- <i>z</i> +1
O9-H9AS1	0.84	2.99	3.822(3)	172	- <i>x</i> +2,- <i>y</i> +2,- <i>z</i> +1
O9-H9BO7	0.85	1.94	2.788(4)	176	<i>x</i> , <i>y</i> , <i>z</i> +1
O10-H10CO2	0.85	1.88	2.716(4)	170	x,y-1,z
O10-H10DO5	0.85	2.11	2.947(4)	168	- <i>x</i> +1,- <i>y</i> +1,- <i>z</i> +1
O11-H11BO9	0.85	1.96	2.792(5)	165	- <i>x</i> +1,- <i>y</i> +2,- <i>z</i> +2
O12-H12BO1W	0.89	2.21	2.956(9)	151	- <i>x</i> +1,- <i>y</i> +1,- <i>z</i> +1
O12-H12AO5	0.89	2.16	2.767(4)	128	x, y, z+1
O1W-H1W1O1W	0.89	2.38	2.93(2)	120	-x, -y+1, -z
O1W-H1W2O6	0.89	2.46	2.827(9)	105	x-1,y.z
O2W-H2W1O1W	0.89	2.11	2.834(18)	138	
O2W-H2W2O8	0.89	2.50	3.019(9)	118	-x+1,-y+1,-z+1
2.					
	0.85	2.58	3.085(5)	120	
O8-H8DO5	0.85	2.56	2.965(5)	111	<i>x</i> +1, <i>y</i> -1, <i>z</i>
O8-H8EO7	0.85	2.45	3.272(5)	162	x+1,y-1,z
O8-H8DO5	0.85	2.56	2.965(5)	111	<i>x</i> +1, <i>y</i> -1, <i>z</i>
O8-H8ES1	0.85	2.87	3.505(4)	134	<i>x</i> +1, <i>y</i> -1, <i>z</i>
3					
O11-H11AO1	0.85	2.08	2.678(5)	127.1	
O8-H8CO2	0.85	2.00	2.739(5)	145.4	<i>x</i> , <i>y</i> +1, <i>z</i>
O8-H8DO6	0.85	2.18	2.927(5)	146.5	<i>x</i> +1, <i>y</i> +1, <i>z</i> +1
O8-H8DS1	0.85	2.87	3.524(4)	135.3	<i>x</i> +1, <i>y</i> +1, <i>z</i> +1
O9-H9AO6	0.85	2.01	2.799(5)	153.4	<i>x</i> +1, <i>y</i> +1, <i>z</i> +1
O9-H9AS1	0.85	2.84	3.509(4)	137.1	<i>x</i> +1, <i>y</i> +1, <i>z</i> +1
O9-H9BO8	0.85	2.09	2.793(6)	139.4	- <i>x</i> +2,- <i>y</i> +2,- <i>z</i> +1
O10-H10CO9	0.85	2.01	2.841(5)	165.1	- <i>x</i> +3,- <i>y</i> +2,- <i>z</i> +1
O10-H10DO2	0.85	2.25	2.910(5)	134.5	<i>x</i> +1, <i>y</i> +1, <i>z</i>
O11-H11BO2	0.85	2.36	2.936(5)	125.9	<i>x</i> , <i>y</i> +1, <i>z</i>

Table S2 Hydrogen bonds for compound 1, 2, and 3 [Å and °]

Fig. S1 View of the 3D supramolecular framework linked together by hydrogen bonding of ${\bf 1}$

Fig.S2 Simulated(black) and as-synthesized (red) XRPD patterns of 1-3

Fig.S3 TG curves of complexes 1-3.