Ni(II) dipyrrin complexes bearing peripheral pyridyl or imidazolyl groups self-assemble into 2- and 3-D coordination polymers

Antoine Béziau,^a Stéphane A. Baudron,^{*,a} Guillaume Rogez^b and Mir Wais Hosseini^{*,a}

^{*a*} Laboratoire de Tectonique Moléculaire, UMR CNRS 7140, Université de Strasbourg, F-67000, Strasbourg, France.

Email : <u>hosseini@unistra.fr</u>, <u>sbaudron@unistra.fr</u>

^b Institut de Physique et Chimie des Matériaux de Strasbourg, UMR UdS-CNRS 7504, Strasbourg, France

Electronic Supplementary Information

PXRD diagrams were collected at 293 K on a Bruker D8 diffractometer using monochromatic Cu-K α radiation with a scanning range between 4 and 40° using a scan step of 2°/mn. The simulated diagrams are based on single-crystal data collected at 173 K.

Figure S1. Simulated (red) and experimental (black) X-Ray diffraction powder pattern for compound **7**. The difference in intensities results from preferential orientation.

Figure S2. Simulated (red) and experimental (black) X-Ray diffraction powder pattern for compound $(\Delta$ -8)(CHCl₃)₂(Et₂O). The difference in intensities results from preferential orientation.

Figure S3. Simulated (red) and experimental (black) X-Ray diffraction powder pattern for compound (9)(CHCl₃). The difference in intensities results from preferential orientation.

Figure S4. Simulated (red) and experimental (black) X-Ray diffraction powder pattern for compound $(10)_2(DMF)_3(MeOH)_2$. The difference in intensities results from preferential orientation.

Figure S5. Representation of the 4-connected cds net in (10)₂(DMF)₃(MeOH)₂.