Electronic supplementary information (ESI):

Formation and evolution of nanoporous dendrites during dealloying

of ternary Al-Ag-Au precursor

Yan Wang,* and Bo Wu

School of Materials Science and Engineering, University of Jinan, West Road of Nan Xinzhuang

No. 336, Jinan 250022, P.R. China

* Corresponding author. Email: mse_wangy@ujn.edu.cn

	Point	Al, at%	Ag, at.%	Au, at.%
	1	60.6	7.4	32.0
Dendrite	2	59.9	8.9	31.2
	3	61.0	8.7	30.3
	4	61.3	8.4	30.3
	5	59.4	9.9	30.7
	6	60.4	10.2	29.4
	Average value/standard error	60.4/0.7	8.9/1.0	30.7/0.9
	1	47.1	46.8	6.1
	2	46.7	48.6	4.7
Eutectic	3	43.8	49.5	6.7
matrix	4	44.7	50.9	4.4
	5	45.1	51.2	3.7
	Average value/standard error	45.5/1.4	49.4/1.8	5.1/1.2

Table S1 Chemical compositions of the dendrites and lamellar eutectic matrix of the rapidly

solidified Al₆₅Ag_{22.75}Au_{12.25} precursor.

Table S2 Chemical compositions of the np-AgAu alloy obtained after the 2nd dealloying in the 20

Area	Al, at%	Ag, at.%	Au, at.%
1	8.4	63.7	27.9
2	13.2	57.1	29.7
3	8.1	58.5	33.4
4	7.2	62.1	30.7
5	11.4	61.5	27.1
Average value/standard error	9.6/2.5	60.6/2.7	29.8/2.5

wt.% NaOH solution.

Fig. S1. EDX spectra of the dendrites in the rapidly solidified $Al_{65}Ag_{22.75}Au_{12.25}$ precursor.

Fig. S2. EDX spectra of the lamellar eutectic matrix in the rapidly solidified $Al_{65}Ag_{22.75}Au_{12.25}$

precursor.

Fig. S3. Back-scattered section-view SEM image of the rapidly solidified Al₆₀Ag₄₀ alloy.

Fig. S4. SEM images showing the section-view microstructure of the as-dealloyed $Al_{65}Ag_{22.75}Au_{12.25}$ sample obtained after the 1st dealloying in the 5 wt.% HCl solution.

Fig. S5. SEM images showing the section-view microstructure of the np-AgAu alloy obtained after the 2^{nd} dealloying of Al₆₅Ag_{22.75}Au_{12.25} in the 20 wt.% NaOH solution.

Fig. S6. EDX spectra of the np-AgAu alloy obtained after the 2nd dealloying in the 20 wt.% NaOH

solution.

Fig. S7. SEM images showing the section-view microstructure of the np-Au dendrites obtained after the 3^{rd} dealloying of Al₆₅Ag_{22.75}Au_{12.25} in the 65 wt.% HNO₃ solution.

Fig. S8. SEM image showing the microstructure of the np-Ag sample obtained by dealloying the

rapidly solidified $Al_{65}Ag_{35}$ alloy in the 5 wt.% HCl solution.

Fig. S9. SEM images showing the section-view microstructure of the np-AgAu alloy obtained through the two-step dealloying of the rapidly solidified $Al_{65}Ag_{25}Au_{10}$ precursor firstly in the 5wt.% HCl solution and then in the 20 wt.% NaOH solution.