## Supporting information

Table S1. Selected bond lengths and bond angles for complexes 1 and 2.

|              | -         | 1                 |          |
|--------------|-----------|-------------------|----------|
| Cu(1)-N(2)   | 2.044(13) | N(2)-Cu(1)-N(8)   | 129.7(5) |
| Cu(1)-N(8)   | 2.018(13) | N(2)-Cu(1)-N(5)   | 109.4(5) |
| Cu(1)-N(5)   | 2.086(13) | N(8)-Cu(1)-N(5)   | 111.4(5) |
| Cu(1)-N(1)   | 2.145(13) | N(2)-Cu(1)-N(1)   | 79.3(5)  |
| Cu(1)-Cl(1)  | 2.247(5)  | N(8)-Cu(1)-N(1)   | 80.3(5)  |
| Cu(2)-N(18)  | 1.994(14) | N(5)-Cu(1)-N(1)   | 79.6(5)  |
| Cu(2)-N(12)  | 2.036(14) | N(2)-Cu(1)-Cl(1)  | 100.0(4) |
| Cu(2)-N(15)  | 2.120(13) | N(8)-Cu(1)-Cl(1)  | 100.5(4) |
| Cu(2)-N(11)  | 2.167(13) | N(5)-Cu(1)-Cl(1)  | 100.3(4) |
| Cu(2)-Cl(2)  | 2.225(5)  | N(1)-Cu(1)-Cl(1)  | 179.1(4) |
| Cu(3)-N(14)  | 2.018(14) | N(18)-Cu(2)-N(12) | 132.6(6) |
| Cu(3)-N(7)   | 2.011(12) | N(18)-Cu(2)-N(15) | 106.7(5) |
| Cu(3)-Cl(5)  | 2.325(5)  | N(12)-Cu(2)-N(15) | 111.2(5) |
| Cu(3)-Cl(4)  | 2.332(5)  | N(18)-Cu(2)-N(11) | 80.6(5)  |
| Cu(3)-Cl(3)  | 2.499(5)  | N(12)-Cu(2)-N(11) | 79.1(5)  |
| Cu(4)-N(17)  | 2.035(13) | N(15)-Cu(2)-N(11) | 80.2(5)  |
| Cu(4)-N(4)   | 2.031(13) | N(18)-Cu(2)-Cl(2) | 100.3(4) |
| Cu(4)-Cl(6)  | 2.317(5)  | N(12)-Cu(2)-Cl(2) | 97.3(4)  |
| Cu(4)-Cl(7)  | 2.324(5)  | N(15)-Cu(2)-Cl(2) | 103.6(4) |
| Cu(4)-Cl(8)  | 2.530(5)  | N(11)-Cu(2)-Cl(2) | 175.6(4) |
| Cu(5)-N(10)  | 1.973(16) | N(14)-Cu(3)-N(7)  | 173.0(5) |
| Cu(5)-N(20)  | 1.992(15) | N(14)-Cu(3)-Cl(5) | 91.9(4)  |
| Cu(5)-Cl(9)  | 2.175(11) | N(7)-Cu(3)-Cl(5)  | 91.2(4)  |
| Cu(5)-Cl(10) | 2.378(8)  | N(14)-Cu(3)-Cl(4) | 87.3(4)  |
| Cu(5)-Cl(11) | 2.392(10) | N(7)-Cu(3)-Cl(4)  | 86.7(4)  |

| Cu(6)-N(22)   | 1.991(14) | Cl(5)-Cu(3)-Cl(4)   | 146.8(2)   |
|---------------|-----------|---------------------|------------|
| Cu(6)-N(28)   | 2.033(14) | N(14)-Cu(3)-Cl(3)   | 91.7(4)    |
| Cu(6)-N(25)   | 2.078(14) | N(7)-Cu(3)-Cl(3)    | 93.6(4)    |
| Cu(6)-N(21)   | 2.191(13) | Cl(5)-Cu(3)-Cl(3)   | 103.72(19) |
| Cu(6)-Cl(12)  | 2.236(5)  | Cl(4)-Cu(3)-Cl(3)   | 109.48(18) |
| Cu(7)-N(35)   | 1.998(14) | N(17)-Cu(4)-N(4)    | 172.0(5)   |
| Cu(7)-N(38)   | 2.011(14) | N(17)-Cu(4)-Cl(6)   | 90.8(4)    |
| Cu(7)-N(31)   | 2.109(12) | N(4)-Cu(4)-Cl(6)    | 92.7(4)    |
| Cu(7)-N(32)   | 2.090(14) | N(17)-Cu(4)-Cl(7)   | 85.5(4)    |
| Cu(7)-Cl(13)  | 2.247(5)  | N(4)-Cu(4)-Cl(7)    | 87.6(4)    |
| Cu(8)-N(34)   | 2.005(14) | Cl(6)-Cu(4)-Cl(7)   | 146.7(2)   |
| Cu(8)-N(24)   | 2.029(14) | N(17)-Cu(4)-Cl(8)   | 94.3(4)    |
| Cu(8)-Cl(15)  | 2.317(5)  | N(4)-Cu(4)-Cl(8)    | 91.9(4)    |
| Cu(8)-Cl(14)  | 2.326(5)  | Cl(6)-Cu(4)-Cl(8)   | 103.77(18) |
| Cu(8)-Cl(16)  | 2.493(5)  | Cl(7)-Cu(4)-Cl(8)   | 109.46(18) |
| Cu(9)-N(37)   | 2.017(14) | N(10)-Cu(5)-N(20)   | 175.8(7)   |
| Cu(9)-N(27)   | 2.008(13) | N(10)-Cu(5)-Cl(9)   | 87.7(6)    |
| Cu(9)-Cl(19)  | 2.318(5)  | N(20)-Cu(5)-Cl(9)   | 88.9(5)    |
| Cu(9)-Cl(17)  | 2.341(5)  | N(10)-Cu(5)-Cl(10)  | 83.3(5)    |
| Cu(9)-Cl(18)  | 2.456(5)  | N(20)-Cu(5)-Cl(10)  | 95.8(5)    |
| Cu(10)-N(30)  | 2.019(18) | Cl(9)-Cu(5)-Cl(10)  | 113.1(4)   |
| Cu(10)-N(40)  | 2.00(2)   | N(10)-Cu(5)-Cl(11)  | 92.2(6)    |
| Cu(10)-O(9W)  | 2.17(2)   | N(20)-Cu(5)-Cl(11)  | 91.6(5)    |
| Cu(10)-Cl(21) | 2.292(13) | Cl(9)-Cu(5)-Cl(11)  | 117.4(4)   |
| Cu(10)-Cl(20) | 2.560(11) | Cl(10)-Cu(5)-Cl(11) | 129.1(3)   |
|               | 2         | 2                   |            |
| Cu(1)-N(8)    | 2.050(4)  | N(8)-Cu(1)-N(5)     | 118.89(16) |
| Cu(1)-N(5)    | 2.061(4)  | N(8)-Cu(1)-N(2)     | 121.69(16) |
| Cu(1)-N(2)    | 2.067(4)  | N(5)-Cu(1)-N(2)     | 110.32(17) |
| Cu(1)-N(1)    | 2.137(4)  | N(8)-Cu(1)-N(1)     | 79.92(16)  |

| Cu(1)-Cl(5)          | 2.2419(15) | N(5)-Cu(1)-N(1)     | 79.74(16)  |
|----------------------|------------|---------------------|------------|
| Cu(2)-N(9)           | 1.990(5)   | N(2)-Cu(1)-N(1)     | 80.01(16)  |
| Cu(2)-N(10)#1        | 2.010(5)   | N(8)-Cu(1)-Cl(5)    | 100.34(12) |
| Cu(2)-O(2)           | 2.085(4)   | N(5)-Cu(1)-Cl(5)    | 100.93(13) |
| Cu(2)-Cl(4)          | 2.2970(17) | N(2)-Cu(1)-Cl(5)    | 99.06(12)  |
| Cu(2)-Cl(8)          | 2.5015(17) | N(1)-Cu(1)-Cl(5)    | 179.01(12) |
| Cu(3)-N(4)           | 2.027(5)   | N(9)-Cu(2)-N(10)#1  | 172.4(2)   |
| Cu(3)-N(4)#2         | 2.027(5)   | N(9)-Cu(2)-O(2)     | 87.18(18)  |
| Cu(3)-Cl(6)#2        | 2.2804(13) | N(10)#1-Cu(2)-O(2)  | 86.80(19)  |
| Cu(3)-Cl(6)          | 2.2804(13) | N(9)-Cu(2)-Cl(4)    | 88.03(14)  |
| N(4)-Cu(3)-N(4)#2    | 180.000(1) | N(10)#1-Cu(2)-Cl(4) | 94.51(15)  |
| N(4)-Cu(3)-Cl(6)#2   | 91.54(13)  | O(2)-Cu(2)-Cl(4)    | 146.68(14) |
| N(4)#2-Cu(3)-Cl(6)#2 | 88.46(13)  | N(9)-Cu(2)-Cl(8)    | 92.43(14)  |
| N(4)-Cu(3)-Cl(6)     | 88.46(13)  | N(10)#1-Cu(2)-Cl(8) | 93.75(15)  |
| N(4)#2-Cu(3)-Cl(6)   | 91.54(13)  | O(2)-Cu(2)-Cl(8)    | 107.64(14) |
| Cl(6)#2-Cu(3)-Cl(6)  | 180.00(8)  | Cl(4)-Cu(2)-Cl(8)   | 105.50(6)  |

Symmetry transformations used to generate equivalent atoms: #1 -y+2,x-y+1,z; #2 -x+y+1,-x+2,z; #3 -x+y+1,-x+1,z; #4 -y+1,x-y,z; #5 x,x-y,-z+3/2; #6 -x+y+1,y,-z+3/2; #7 -y+1,-x+1,-z+3/2.

| Table S2. ( | Oxidation | of tetralin | with complex | es 1 and 2 a | s catalysts ( | CuCl <sub>2</sub> as a | reference). |
|-------------|-----------|-------------|--------------|--------------|---------------|------------------------|-------------|
|-------------|-----------|-------------|--------------|--------------|---------------|------------------------|-------------|

| Cat. |  |
|------|--|
|------|--|

| Selectivity(%) | Conversion           | Conversion(%) | Time/h | Ctalyst   | Entry |
|----------------|----------------------|---------------|--------|-----------|-------|
| 5 ( )          | of major product*(%) | · · · ·       |        | 5         | 5     |
| 64             | 7.6                  | 12            | 1      | Complex 1 | 1     |
| 65             | 8.7                  | 13            | 2      | _         |       |
| 66             | 11.8                 | 17.8          | 3      |           |       |
| 67             | 12                   | 18.4          | 4      |           |       |
| 67             | 14.6                 | 21.7          | 5      |           |       |
| 68             | 15.2                 | 22.2          | 6      |           |       |
| 70             | 18.5                 | 26.5          | 10     |           |       |
| 76             | 28                   | 37            | 24     |           |       |
| 82             | 41                   | 50.6          | 48     |           |       |
| 71             | 0.46                 | 0.65          | 1      | Complex 2 | 2     |
| 65             | 1.5                  | 2.3           | 2      | _         |       |
| 62             | 6.7                  | 10.7          | 3      |           |       |
| 63             | 10                   | 15.6          | 4      |           |       |
| 65             | 16                   | 24.6          | 5      |           |       |
| 67             | 18                   | 27            | 6      |           |       |
| 70             | 22.8                 | 32.6          | 10     |           |       |
| 78             | 36                   | 45.8          | 24     |           |       |
| 84             | 44                   | 52            | 48     |           |       |

| 67 | 1.1  | 1.7  | 1  | CuCl <sub>2</sub> | 3 |
|----|------|------|----|-------------------|---|
| 69 | 5.8  | 8.4  | 2  |                   |   |
| 71 | 6.9  | 9.6  | 3  |                   |   |
| 72 | 10   | 13.2 | 4  |                   |   |
| 66 | 9.9  | 14.9 | 5  |                   |   |
| 72 | 10.4 | 15.4 | 6  |                   |   |
| 73 | 16.7 | 22.9 | 10 |                   |   |
| 77 | 35   | 46   | 24 |                   |   |
| 78 | 43   | 55   | 48 |                   |   |

*Table S3.* Oxidation of diphenyl methane with complexes 1 and 2 as catalysts ( $CuCl_2$  as a reference).

| · · · · · · · · · · · · · · · · · · · |  | TBPH -<br>Cat. |  | + | + | OH |
|---------------------------------------|--|----------------|--|---|---|----|
|---------------------------------------|--|----------------|--|---|---|----|

| Selectivity(%) | Conversion<br>of major product*(%) | Conversion(%) | Time/h | Ctalyst           | Entry |
|----------------|------------------------------------|---------------|--------|-------------------|-------|
| 74             | 3.6                                | 4.9           | 1      | Complex 1         | 1     |
| 76             | 5.1                                | 6.6           | 2      |                   |       |
| 75             | 5.7                                | 7.6           | 3      |                   |       |
| 76             | 6.7                                | 8.8           | 4      |                   |       |
| 75             | 6.9                                | 9.2           | 5      |                   |       |
| 75             | 8.7                                | 11.6          | 6      |                   |       |
| 76             | 9.7                                | 12.7          | 24     |                   |       |
| 75             | 12.8                               | 17.2          | 48     |                   |       |
| 86             | 0.25                               | 0.29          | 1      | Complex 2         | 2     |
| 78             | 0.32                               | 0.41          | 2      |                   |       |
| 84             | 0.63                               | 0.75          | 3      |                   |       |
| 81             | 1.3                                | 1.6           | 4      |                   |       |
| 74             | 2.0                                | 2.7           | 5      |                   |       |
| 74             | 3.1                                | 4.2           | 6      |                   |       |
| 74             | 5.9                                | 8.0           | 24     |                   |       |
| 73             | 5.9                                | 8.1           | 48     |                   |       |
| 70             | 8.1                                | 11.6          | 1      | CuCl <sub>2</sub> | 3     |
| 70             | 8.3                                | 11.9          | 2      |                   |       |
| 71             | 8.3                                | 11.7          | 3      |                   |       |
| 70             | 9.3                                | 13.2          | 4      |                   |       |
| 70             | 9.1                                | 12.9          | 5      |                   |       |

| 6  | 13.4 | 9.4 | 70 |
|----|------|-----|----|
| 24 | 13.0 | 9.3 | 71 |
| 48 | 12.4 | 8.6 | 69 |



*Figure S1.* Spacefilling modes in the crystal packing of complex **1** along *a* (left) and *c* (middle) directions, and complex **2** along *b* direction (right). The solvent molecules are omitted for clarity.



Figure S2. ESI-MS spectra of complexes 1 (a) and 2 (b).







Figure S4. TGA curves of complexes 1 (left) and 2 (right).