Supplementary Material (ESI) for CrystEngComm

Syntheses, structures, luminescent sensor, and magnetism of a series

of coordination polymers constructed by

3-carboxy-1-(4'-carboxy-benzyl)-2-oxidopyridinium

Na Xu, Jin Yang,* Yuan-Chun He, Ying-Ying Liu, and Jian-Fang Ma*

Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

* Correspondence authors
E-mail: yangjinnenu@yahoo.com.cn (J. Yang)
E-mail: majf247@yahoo.com (J.-F. Ma)
Fax: +86-431-85098620 (J.-F. Ma)

Co(1)-O(1) ^{#1}	2.063(3)	Co(1)-O(2W)	2.109(4)
Co(1)-O(4)	2.072(3)	Co(1)-O(1W)	2.116(3)
Co(1)-O(2) ^{#1}	2.080(3)	Co(1)-O(5) ^{#2}	2.123(3)
O(1) ^{#1} -Co(1)-O(4)	89.53(13)	O(1) ^{#1} -Co(1)-O(2) ^{#1}	85.52(11)
O(4)-Co(1)-O(2) ^{#1}	96.38(13)	O(1) ^{#1} -Co(1)-O(2W)	98.80(13)
O(4)-Co(1)-O(2W)	171.00(13)	O(2) ^{#1} -Co(1)-O(2W)	87.71(13)
O(1) ^{#1} -Co(1)-O(1W)	172.53(12)	O(4)-Co(1)-O(1W)	88.11(13)
O(2) ^{#1} -Co(1)-O(1W)	87.69(11)	O(2W)-Co(1)-O(1W)	84.04(13)
O(1) ^{#1} -Co(1)-O(5) ^{#2}	89.68(11)	O(4)-Co(1)-O(5) ^{#2}	94.51(12)
O(2) ^{#1} -Co(1)-O(5) ^{#2}	168.06(12)	O(2W)-Co(1)-O(5) ^{#2}	82.21(12)
O(1W)-Co(1)-O(5) ^{#2}	97.57(12)		

Table S1a. Selected bond distances (Å) and angles (°) for 1.

Table S1b. Hydrogen bonds for **1** (Å and °).

D-H···A	d (D-H)	d (H···A)	d (DA)	< (DHA)
O(1W)-H(1A)O(5)	0.899(10)	1.88(2)	2.728(5)	156(5)
O(1W)-H(1A)…O(2W) ^{#3}	0.899(10)	2.43(4)	3.003(4)	122(4)
O(1W)-H(1B)O(3) ^{#4}	0.900(10)	1.982(18)	2.841(5)	159(4)
O(2W)-H(2A)-O(2) ^{#5}	0.898(10)	1.90(3)	2.717(4)	151(5)
O(2W)-H(2B)O(3) ^{#4}	0.896(10)	1.92(3)	2.718(4)	148(5)

Symmetry transformations used to generate equivalent atoms: ^{#1} -x,-y,-z; ^{#2} x-1,y,z; ^{#3} x+1,y,z; ^{#4} x,y,z-1; ^{#5} -x-1,-y,-z.

Table S2a. Selected bond distances (Å) and angles (°) for 2.

Ni(1)-O(2)	1.998(4)	Ni(1)-O(2W)	2.058(4)
Ni(1)-O(1)	2.036(4)	Ni(1)-O(3W)	2.069(4)
Ni(1)-O(5) ^{#1}	2.050(4)	Ni(1)-O(1W)	2.102(4)
O(2)-Ni(1)-O(1)	88.18(16)	O(2)-Ni(1)-O(5) ^{#1}	176.24(17)
O(1)-Ni(1)-O(5) ^{#1}	88.09(16)	O(2)-Ni(1)-O(2W)	90.91(19)

O(1)-Ni(1)-O(2W)	92.29(17)	O(5) ^{#1} -Ni(1)-O(2W)	89.73(17)
O(2)-Ni(1)-O(3W)	91.68(16)	O(1)-Ni(1)-O(3W)	176.93(17)
O(5) ^{#1} -Ni(1)-O(3W)	92.02(16)	O(2W)-Ni(1)-O(3W)	90.77(17)
O(2)-Ni(1)-O(1W)	89.4(2)	O(1)-Ni(1)-O(1W)	88.92(17)
O(5) ^{#1} -Ni(1)-O(1W)	90.03(19)	O(2W)-Ni(1)-O(1W)	178.76(19)
O(3W)-Ni(1)-O(1W)	88.02(17)		

Table S2b. Hydrogen bonds for 2 (Å and °).

D-H···A	d (D-H)	d (H···A)	d (D…A)	< (DHA)
$O(3W)-H(3B)-O(4)^{\#1}$	0.903(10)	1.85(3)	2.699(6)	156(7)
O(3W)-H(3A)-O(3) ^{#3}	0.901(10)	1.79(2)	2.669(6)	165(7)

Symmetry transformations used to generate equivalent atoms: ^{#1} x,-y+1/2,z+1/2; ^{#2} x,-y+1/2,z-1/2; ^{#3} -x+2,-y+1,-z+2.

Table S3. Selected bond distances (Å) and angles (°) for 3.

Cu(1)-O(5) ^{#1}	1.904(4)	Cu(1)-O(2)	1.922(5)
Cu(1)-O(1)	1.943(4)	Cu(1)-O(3) ^{#2}	1.977(4)
Cu1-O2 ^{#2}	2.656(4)		
O(5) ^{#1} -Cu(1)-O(2)	170.5(2)	O(5) ^{#1} -Cu(1)-O(1)	90.9(2)
O(2)-Cu(1)-O(1)	91.1(2)	$O(5)^{\#1}$ -Cu(1)-O(3) ^{#2}	93.6(2)
O(2)-Cu(1)-O(3) ^{#2}	86.0(2)	O(1)-Cu(1)-O(3) ^{#2}	169.5(3)
O(2) ^{#2} -Cu(1)-O(3) ^{#2}	54.22(1)	O(2) ^{#2} -Cu(1)-O(1)	115.3(2)
O(2) ^{#2} -Cu(1)-O(2)	78.41(2)	$O(2)^{#2}$ -Cu(1)-O(5) ^{#1}	109.05(2)

Symmetry transformations used to generate equivalent atoms: ^{#1} -x,y-1/2,-z+1; ^{#2} -x,y-1/2,-z+2; ^{#3} -x,y+1/2,-z+2; ^{#4} -x,y+1/2,-z+1.

Table S4. Selected bond distances (Å) and angles (°) for 4.

Cd(1)-O(4) ^{#1}	2.209(3)	Cd(1)-O(1)	2.263(3)
Cd(1)-O(2)	2.275(3)	$Cd(1)-O(2)^{\#2}$	2.279(3)

Cd(1)-O(5) ^{#3}	2.282(3)	Cd(1)-O(3) ^{#4}	2.311(3)	
O(4) ^{#1} -Cd(1)-O(1)	94.17(13)	O(4)#1-Cd(1)-O(2)	171.99(12)	
O(1)-Cd(1)-O(2)	78.44(10)	$O(4)^{\#1}-Cd(1)-O(2)^{\#2}$	90.78(13)	
O(1)-Cd(1)-O(2) ^{#2}	175.01(11)	O(2)-Cd(1)-O(2) ^{#2}	96.58(14)	
$O(4)^{\#1}-Cd(1)-O(5)^{\#3}$	91.67(13)	O(1)-Cd(1)-O(5) ^{#3}	89.53(13)	
O(2)-Cd(1)-O(5) ^{#3}	91.36(12)	$O(2)^{#2}-Cd(1)-O(5)^{#3}$	90.97(12)	
O(4) ^{#1} -Cd(1)-O(3) ^{#4}	87.51(15)	O(1)-Cd(1)-O(3) ^{#4}	81.17(12)	
O(2)-Cd(1)-O(3) ^{#4}	88.30(13)	$O(2)^{#2}-Cd(1)-O(3)^{#4}$	98.43(11)	
O(5) ^{#3} -Cd(1)-O(3) ^{#4}	170.57(13)			
	• 1 4		. #1	

Symmetry	transformations	used	10	generate	equivalent	atoms:	
x-y+1/3,-y+2	2/3,-z+1/6; ^{#2} y+1,-	x+y+1,-	z; ^{#3} 2	x-1/3,x-y-2/3	,z-1/6; ^{#4} -x+	y+2,-x+1,z;	#5
x-y,x-1,-z; #6	-y+1,x-y-1,z; #7 x+	1/3,x-y-	1/3,z+	+1/6.			

Table S5. Selected bond distances (Å) and angles (°) for 5.

Mn(1)-O(4) ^{#1}	2.118(5)	Mn(1)-O(1) ^{#2}	2.158(5)
Mn(1)-O(5)	2.177(5)	$Mn(1)-O(2)^{\#2}$	2.182(5)
$Mn(1)-O(2)^{\#3}$	2.189(4)	Mn(1)-O(3) ^{#4}	2.203(5)
O(4) ^{#1} -Mn(1)-O(1) ^{#2}	93.3(2)	$O(4)^{\#1}-Mn(1)-O(5)$	91.3(2)
O(1) ^{#2} -Mn(1)-O(5)	90.1(2)	$O(4)^{\#1}-Mn(1)-O(2)^{\#2}$	173.92(19)
$O(1)^{#2}-Mn(1)-O(2)^{#2}$	81.27(18)	O(5)-Mn(1)-O(2) ^{#2}	91.53(19)
$O(4)^{\#1}-Mn(1)-O(2)^{\#3}$	89.9(2)	$O(1)^{#2}-Mn(1)-O(2)^{#3}$	176.0(2)
O(5)-Mn(1)-O(2) ^{#3}	92.25(18)	$O(2)^{#2}-Mn(1)-O(2)^{#3}$	95.4(2)
$O(4)^{\#1}-Mn(1)-O(3)^{\#4}$	87.8(2)	$O(1)^{#2}-Mn(1)-O(3)^{#4}$	82.12(19)
O(5)-Mn(1)-O(3) ^{#4}	172.12(19)	$O(2)^{#2}-Mn(1)-O(3)^{#4}$	88.7(2)
$O(2)^{#3}-Mn(1)-O(3)^{#4}$	95.58(18)		

Symmetry transformations used to generate equivalent atoms: ^{#1} y+1,-x+y+1,-z; ^{#2} x+1/3,x-y-1/3,z+1/6; ^{#3} x-y+2/3,-y+1/3,-z-1/6; ^{#4} -y+4/3,-x+2/3,z+1/6; ^{#5} x-1/3,x-y-2/3,z-1/6; ^{#6} x-y-1/3,-y+1/3,-z-1/6; ^{#7} -y+2/3,-x+4/3,z-1/6; ^{#8} x-y,x-1,-z.

Cu(1)-O(1)	1.9449(15)	Cu(1)-O(2)	1.9624(15)
Cu(1)-O(5) ^{#1}	1.9854(15)	Cu(1)-N(2)	1.9992(17)
Cu(1)-O(1W)	2.348(2)	$Cu(1)-O(4)^{\#1}$	2.4952(19)
O(1)-Cu(1)-O(2)	90.68(6)	O(1)-Cu(1)-O(5) ^{#1}	90.56(7)
O(2)-Cu(1)-O(5) ^{#1}	158.41(7)	O(1)-Cu(1)-N(2)	170.07(7)
O(2)-Cu(1)-N(2)	92.46(7)	$O(5)^{\#1}-Cu(1)-N(2)$	89.98(7)
O(1)-Cu(1)-O(1W)	86.11(7)	O(2)-Cu(1)-O(1W)	98.77(7)
O(5) ^{#1} -Cu(1)-O(1W)	102.82(7)	N(2)-Cu(1)-O(1W)	84.11(7)
O(1)-Cu(1)-O(4) ^{#1}	95.67(8)	O(2)-Cu(1)-O(4) ^{#1}	100.67(7)
$O(5)^{\#1}$ -Cu(1)-O(4) $^{\#1}$	57.77(7)	O(4) ^{#1} -Cu(1)-O(1W)	160.44(7)
N(2)-Cu(1)-O(4) ^{#1}	93.00(8)		

Table S6. Selected bond distances (Å) and angles (°) for 6.

Symmetry transformations used to generate equivalent atoms: ^{#1} -x+1,-y,-z+1; ^{#2} -x+2,-y+1,-z+1.

O(1(1)) O(4)	0.020(4)		0.070(2)
Cd(1)-O(4)	2.230(4)	Cd(1)- $O(1w)$	2.270(3)
$Cd(1)-O(2)^{\#1}$	2.292(3)	$Cd(1)-O(2)^{\#2}$	2.317(2)
$Cd(1)-O(1)^{#2}$	2.334(3)	Cd(1)-N(2)	2.363(3)
O(4)-Cd(1)-O(1W)	174.45(12)	O(4)-Cd(1)-O(2) ^{#1}	95.25(12)
O(1W)-Cd(1)-O(2) ^{#1}	89.85(11)	O(4)-Cd(1)-O(2) ^{#2}	96.19(11)
O(1W)-Cd(1)-O(2) ^{#2}	87.45(10)	$O(2)^{\#1}-Cd(1)-O(2)^{\#2}$	72.17(10)
O(4)-Cd(1)-O(1) ^{#2}	87.69(12)	O(1W)-Cd(1)-O(1) ^{#2}	89.34(11)
$O(2)^{\#1}-Cd(1)-O(1)^{\#2}$	145.68(9)	$O(2)^{#2}-Cd(1)-O(1)^{#2}$	73.52(9)
O(4)-Cd(1)-N(2)	80.32(13)	O(1W)-Cd(1)-N(2)	94.87(12)
$O(2)^{\#1}-Cd(1)-N(2)$	126.88(11)	$O(2)^{#2}-Cd(1)-N(2)$	160.73(11)
$O(1)^{#2}-Cd(1)-N(2)$	87.36(11)		

Table S7. Selected bond distances (Å) and angles (°) for **7**.

Symmetry transformations used to generate equivalent atoms: ^{#1} x,y,z+1; ^{#2} -x+1,-y,-z+1; ^{#3} -x+2,-y,-z+1; ^{#4} x,y,z-1.

Mn(1)-O(5) ^{#1}	2.0824(17)	Mn(1)-O(2)	2.1373(16)
Mn(1)-O(1)	2.1843(14)	Mn(1)-O(1W)	2.2024(17)
Mn(1)-N(2)	2.2825(19)	Mn(1)-N(3)	2.296(2)
O(5) ^{#1} -Mn(1)-O(1)	94.52(6)	O(2)-Mn(1)-O(1)	81.16(6)
O(5) ^{#1} -Mn(1)-O(1W)	84.61(7)	O(2)-Mn(1)-O(1W)	102.16(7)
O(1)-Mn(1)-O(1W)	176.67(6)	$O(5)^{#1}$ -Mn(1)-N(2)	98.00(7)
O(2)-Mn(1)-N(2)	153.08(7)	O(1)-Mn(1)-N(2)	78.92(6)
O(1W)-Mn(1)-N(2)	98.00(7)	$O(5)^{#1}$ -Mn(1)-N(3)	168.28(7)
O(2)-Mn(1)-N(3)	90.25(7)	O(1)-Mn(1)-N(3)	87.69(6)
O(1W)-Mn(1)-N(3)	92.52(7)	N(2)-Mn(1)-N(3)	71.10(7)

Table S8. Selected bond distances (Å) and angles (°) for 8.

Table S8b. Hydrogen bonds for 8 (Å and $^{\circ}$).

D-H···A	d (D-H)	d (H····A)	d (D…A)	< (DHA)
O(1W)-H(1B)…O(3) ^{#3}	0.890(10)	1.967(14)	2.820(2)	160(3)
O(1W)-H(1B)…O(2) ^{#3}	0.890(10)	2.50(2)	3.232(2)	140(2)
O(1W)-H(1A)-O(3)#4	0.891(10)	1.989(12)	2.863(2)	167(3)

Symmetry transformations used to generate equivalent atoms: ^{#1} x,y+1,z; ^{#2} x,y-1,z; ^{#3} -x,-y+1,-z; ^{#4} x+1,y,z.

Fig. S1. Coordination environment of the Mn(II) cation in **5**. Symmetry codes: ^{#1} y+1, -x+y+1, -z; ^{#2} x+1/3, x-y-1/3, z+1/6; ^{#3} x-y+2/3, -y+1/3, -z-1/6; ^{#4} -y+4/3, -x+2/3,

z+1/6.

Fig. S2. (a) The diameter of the channel is about 4.2Å. (b) View of the 1D cylindrical channel running along the c axis shown.

Fig. S3. Simulated (blue) and experimental (black) PXRD patterns of 1–8.

Fig. S4. Simulated (blue), experimental (black) and anhydrous compound **4** (red) PXRD patterns.

Fig. S5. The TGA curves of compounds 1-8.