Syntheses of three members of $A^{(II)}M^{(IV)}(PO_4)_2$: Luminescence Properties of PbGe(PO₄)₂ and Its Eu³⁺-doped Powders

Wei-Long Zhang^a, Chen-Sheng, Lin^a, Zhang-Zhen He^a, Hao Zhang^a, Zhong-Zhen, Luo^a, and Wen-Dan Cheng^a*

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese

Academy of Sciences, Fuzhou 350002, P. R. China

Electronic Supplementary Information (ESI)

 $\label{eq:stable} \textbf{Table S1} Crystal data and structural refinements for PbGe(PO_4)_2, SrGe(PO_4)_2, and PbTi(PO_4)_2$

Chemical formula	PbGe(PO ₄) ₂	SrGe(PO ₄) ₂	PbTi(PO ₄) ₂	
Formula weight	469.75	469.75	445.01	
Crystal system	Monoclinic,	Monoclinic,	Monoclinic,	
Space group	C2/c (No. 62)	C2/c (No. 62)	C2/c (No. 62)	
a (Å)	16.48(3)	16.170(13)	16.683(11)	
b (Å)	5.068(8)	5.065(4)	5.171(3)	
c (Å)	7.963(14)	7.869(7)	8.229(5)	
β(°)	114.92(3)	115.072(13)	116.155(7)	
V (Å3)	603.2(18)	583.8(8)	637.3(7)	
Z	4	4	4	
Dcalcd (g/cm ³)	5.173	3.984	4.639	
μ(Mo Kα)/mm-1	33.395	33.395	28.148	
Reflections collected	2149	2149	2214	
Completeness to theta	100.0 %	99.6 %	97.0 %	
Reflections (I>2 σ (I))	682	665	711	
Т (К)	293	293	293	
GOF on F2	1.055	1.136	1.026	
R1, wR2 $[I > 2\sigma(I)]a$	0.0383, 0.0980	0.0238, 0.0578	0.0448, 0.1067	
R1, wR2 (all data)	0.0397, 0.0994	0.0246, 0.0582	0.0496, 0.1094	

${}^{a}R1 = \sum ||Fo| - |Fc|| / \sum |Fo|, wR2 = \{ \sum w[(Fo)^{2} - (Fc)^{2}]^{2} / \sum w[(Fo)^{2}]^{2} \}^{1/2}$

Atom	x	v	Z	$U(_{ea})^a$	
PbGe(PO ₄) ₂					
Pb(1)	0	6847(1)	2500	18(1)	
Ge(1)	2500	2500	0	7(1)	
P(1)	1490(2)	2405(5)	2646(3)	8(1)	
O(1)	2231(5)	2318(15)	1997(9)	10(1)	
O(2)	1685(4)	4680(14)	4095(9)	11(1)	
O(3)	1524(4)	9750(13)	3669(9)	10(1)	
O(4)	552(5)	2805(15)	1176(10)	14(1)	
SrGe(PO ₄) ₂	·		·	·	
Sr(1)	0	2140(1)	2500	11(1)	
Ge(1)	2500	2500	5000	5(1)	
P(1)	1471(1)	-2566(1)	2636(1)	5(1)	
O(1)	521(2)	-2329(4)	1106(3)	12(1)	
O(2)	1626(1)	-213(4)	4002(3)	8(1)	
O(3)	3477(1)	159(4)	6261(3)	9(1)	
O(4)	2253(2)	2617(3)	7049(3)	8(1)	
PbTi(PO ₄) ₂					
Pb(1)	0	1744(2)	2500	21(1)	
Ti(2)	-2500	-2500	5000	7(1)	
P(1)	-1438(2)	-2616(6)	2418(4)	7(1)	
O(1)	-1675(5)	-408(17)	1006(11)	12(2)	
O(2)	1486(5)	4768(17)	3529(11)	11(2)	
O(3)	-502(5)	-2110(19)	3870(11)	16(2)	
O(4)	-2145(5)	-2667(18)	3132(12)	12(2)	

Table S2 Atomic coordinates $(x10^4)$ and displacement parameters $(Å^2 x 10^3)$ for PbGe(PO₄)₂, SrGe(PO₄)₂ and PbTi(PO₄)₂.

 U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor

Table S3 Selected bond lengths (Å) and angles [deg] for PbGe(PO ₄) ₂ , SrGe(PO ₄) ₂ and PbTi(PO ₄) ₂ .

PbGe(PO ₄) ₂					
Pb1-O4	2.635(8)	Pb1-O4#1	2.635(8)	Pb1-O4#2	2.680(9)
Pb1-O4#3	2.680(9)	Pb1-O3	2.715(7)	Pb1-O3#1	2.715(7)
Pb1-O2#1	2.749(8)	Pb1-O2	2.749(8)		
Ge1-O1#5	1.825(7)	Ge1-O1	1.825(7)	Ge1-O2#6	1.885(7)
Ge1-O2#7	1.885(7)	Ge1-O3#6	1.890(7)	Ge1-O3#7	1.890(7)

P1-O4	1.510(8)	P1-O1	1.513(8)	P1-O3#8	1.562(7)		
P1-O2	1.566(7)						
SrGe(PO ₄) ₂							
Sr1-O1#1	2.597(3)	Sr1-O1#2	2.597(3)	Sr1-O3#3	2.618(3)		
Sr1-O3#4	2.618(3)	Sr1-O2#5	2.664(3)	Sr1-O2	2.664(3)		
Sr1-O1#5	2.797(3)	Sr1-O1	2.797(3)	Sr1-O1#6	3.247(3)		
Sr1-O1#7	3.247(3)						
Ge1-O4#3	1.819(3)	Ge1-O4	1.819(3)	Ge1-O3	1.886(2)		
Ge1-O3#3	1.886(2)	Ge1-O2	1.887(2)	Ge1-O2#3	1.887(2)		
P1-O1	1.501(2)	P1-O4#8	1.520(3)	P1-O2	1.552(2)		
P1-O3#9	1.556(2)						
PbTi(PO ₄) ₂	PbTi(PO ₄) ₂						
Pb1-O3#1	2.603(9)	Pb1-O3	2.603(9)	Pb1-O3#2	2.731(9)		
Pb1-O3)#3	2.731(9)	Pb1-O2	2.731(9)	Pb1-O2#1	2.731(9)		
Pb1-O1)	2.744(8)	Pb1-O1#1	2.744(8)				
Ti2-O4)#4	1.877(9)	Ti2-O4	1.877(9)	Ti2-O1#5	1.958(8)		
Ti2-O1)#6	1.958(8)	Ti2-O2#7	1.974(8)	Ti2-O2#2	1.974(8)		
P1-O3)	1.514(8)	P1-O4	1.532(9)	P1-O2#8	1.546(9)		
P1-O1	1.551(9)						

Symmetry transformations used to generate equivalent atoms:

For PbGe(PO₄)_{2:} #1 -x,y,-z+1/2; #2 x,-y+1,z+1/2; #3 -x,-y+1,-z; #4 -x,-y+1,-z+1; #5 -x+1/2,-y+1/2,-z; #6 x,-y+1,z-1/2; #7 -x+1/2,y-1/2,-z+1/2; #8 x,y-1,z; #9 -x+1/2,y+1/2,-z+1/2; #10 x,y+1,z;

For SrGe(PO₄)₂ : #1 x,-y,z+1/2; #2 -x,-y,-z; #3 -x+1/2,-y+1/2,-z+1; #4 x-1/2,-y+1/2,z-1/2; #5 -x,y,-z+1/2; #6 -x,y+1,-z+1/2; #7 x,y+1,z; #8 x,-y,z-1/2; #9 -x+1/2,-y-1/2,-z+1; #10 x,y-1,z;

For PbTi(PO₄)₂: #1 -x,y,-z+1/2; #2 -x,-y,-z+1; #3 x,-y,z-1/2; #4 -x-1/2,-y-1/2,-z+1; #5 -x-1/2,y-1/2,-z+1/2; #6 x,-y,z+1/2; #7 x-1/2,y-1/2,z; #8 -x,y-1,-z+1/2; #9 -x-1/2,y+1/2,-z+1/2; #10 -x,y+1,-z+1/2; #11 x+1/2,y+1/2,z;

Table S4 CIE Chromaticity Coordinates of $Pb_{1-x}Eu_xGe(PO_4)_2$

Pb _{1-x} Eu _x Ge(PO ₄) ₂	λ_{ex} (nm)	λ_{em} (nm)	CIE
X=0	265 nm	Em _{base =} broad-band(350-700)	(0.23,0.40)
X=0.02	265 nm	$\mathrm{Em}_{\mathrm{base}}$, 594, 612, 653 and 700	(0.22,0.36)
X=0.04	265 nm	$\mathrm{Em}_{\mathrm{base}}$, 594, 612, 653 and 700	(0.31,0.36)
X=0.06	265 nm	$\mathrm{Em}_{\mathrm{base}}$, 594, 612, 653 and 700	(0.35,0.36)
X=0.07	265 nm	$\mathrm{Em}_{\mathrm{base}}$, 594, 612, 653 and 700	(0.37,0.37)
X=0.08	265 nm	$\mathrm{Em}_{\mathrm{base}}$, 594, 612, 653 and 700	(0.43,0.37)
X=0.15	265 nm	Em_{base} , 594, 612, 653 and 700 $$	(0.47,0.37)

Figure S1 Simulated a (black line) and experimental b (red line) powder X-ray (CuKa) diffraction patterns for $PbGe(PO_4)_2$, $SrGe(PO_4)_2$, and $PbTi(PO_4)_2$.

Figure S2 The coordination of oxygen atoms around Pb^{2+} . Pb, and O atoms are represented by teal and red, respectively.

Figure S3 TGA and DTA curves for $PbGe(PO_4)_2$ from room temperature to 1273 K

Figure S4 Optical diffuse reflectance spectra for PbGe(PO₄)₂.

Figure S5 Powder X-ray (CuKa) diffraction patterns for Pb_{1-x}Eu_xGe(PO₄)₂

Figure S6 PL images of PbGe(PO₄)₂and Pb_{1-x}Eu_xGe(PO₄)₂ samples excited by 265nm light.

PL Images of Pb_{1-x}Eu_xGe(PO₄)₂

PbGe(PO₄)₂

 $Pb_{0.98}Eu_{0.02}Ge(PO_4)_2$

Pb_{0.96}Eu_{0.04}Ge(PO₄)₂ Pb_{0.94}Eu_{0.06}Ge(PO₄)₂

PO₄)₂ Pb_{0.92}Eu_{0.08}Ge(PO₄)₂

Pb_{0.85}Eu_{0.15}Ge(PO₄)₂

Figure S7 The calculated band structures of $PbGe(PO_4)_2$ crystal in the range of -2.0 and 10.0 eV. The Fermi level is set at 0 eV.

Figure S8 PDOS of Eu in PbGe(PO₄)₂ with 6. 25% Eu³⁺doping given by GGA+U. The Fermi level is set at 0 eV.

