Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013

Supporting Information

 $\textbf{Table S1}. Synthetic parameters for preparation of NaFY_4: Eu^{3+}/Tb^{3+}, Y(OH)_3: Eu^{3+}/Y(OH)_3: Tb^{3+} with various phase structures and the structure of the structu$

morphologies

Phase structure	Surfactants (mL)	Eu ³⁺ /Tb ³⁺ (mol.%)	Temp. (°C)	Time (h)	NaOH (g)	NaF (M)	Morphology
β -NaYF ₄	OA=20	20	200	8	1.2	1.0	Rod
β -NaYF ₄	OA:OM=17:3	20	200	8	1.2	1.0	Rod
Y(OH) ₃	OM=20	20	200	8	1.2	1.0	Taper rod
α-NaYF₄ β-NaYF₄	OA:OM=17:3	1	200	8	1.2	1.0	Sphere
α-NaYF₄ β-NaYF₄	OA:OM=17:3	3	200	8	1.2	1.0	Sphere
α-NaYF₄ β-NaYF₄	OA:OM=17:3	5	200	8	1.2	1.0	Sphere Rod
α-NaYF ₄ β-NaYF ₄	OA:OM=17:3	10	200	8	1.2	1.0	Sphere Rod
β -NaYF ₄	OA:OM=17:3	15	200	8	1.2	1.0	Rod
β -NaYF ₄	OA:OM=17:3	20	200	8	1.2	1.0	Sphere
β -NaYF ₄	OA:OM=17:3	25	200	8	1.2	1.0	Sphere
α-NaYF ₄	OA:OM=17:3	20	100	8	1.2	1.0	Sphere
α-NaYF₄ β-NaYF₄	OA:OM=17:3	20	130	8	1.2	1.0	Sphere Rod
α-NaYF4 β-NaYF4	OA:OM=17:3	20	160	8	1.2	1.0	Sphere Rod
β -NaYF ₄	OA:OM=17:3	20	180	8	1.2	1.0	Rod
β -NaYF ₄	OA:OM=17:3	20	200	8	1.2	1.0	Rod
α-NaYF ₄	OA:OM=17:3	20	200	1	1.2	1.0	Sphere
α-NaYF4 β-NaYF4	OA:OM=17:3	20	200	2	1.2	1.0	Sphere Rod
β -NaYF ₄	OA:OM=17:3	20	200	6	1.2	1.0	Rod
β -NaYF ₄	OA:OM=17:3	20	200	8	1.2	1.0	Rod
β -NaYF ₄	OA:OM=17:3	20	200	10	1.2	1.0	Rod
β -NaYF ₄	OA:OM=17:3	20	200	12	1.2	1.0	Rod
β -NaYF ₄	OA:OM=17:3	20	200	24	1.2	1.0	Spindle
α-NaYF₄ β-NaYF₄	OA:OM=17:3	20	200	8	0.3	1.0	Sphere Rod
α-NaYF₄ β-NaYF₄	OA:OM=17:3	20	200	8	0.6	1.0	Sphere Rod
α-NaYF₄ β-NaYF₄	OA:OM=17:3	20	200	8	0.9	1.0	Rod
β -NaYF ₄	OA:OM=17:3	20	200	8	1.2	1.0	Rod
β -NaYF ₄	OA:OM=17:3	20	200	8	1.8	1.0	Sphere
β -NaYF ₄	OA:OM=17:3	20	200	8	1.2	0.12	Prism
β -NaYF ₄	OA:OM=17:3	20	200	8	1.2	0.48	Prism
β -NaYF ₄	OA:OM=17:3	20	200	8	1.2	0.60	plate
β -NaYF ₄	OA:OM=17:3	20	200	8	1.2	0.84	plate
β -NaYF ₄	OA:OM=17:3	20	200	8	1.2	1.0	Rod
β -NaYF ₄	OA:OM=17:3	20	200	8	1.2	1.2	Rod

Table S2. Synthetic parameters for preparation of NaFY₄:Eu³⁺/Tb³⁺, Y (OH)₃: Eu³⁺/Y(OH)₃:Tb³⁺ with various phase structures, sizes, and morphologies synthesized with OA:OM=17:3, Eu³⁺/Tb³⁺ (mol. %)=20.

Phase structure	Temp. (°C)	Time (h)	NaOH (g)	NaF (M)	Morphology	Size (nm)
α-NaYF ₄	100	8	1.2	1.0	Sphere	10.4
α-NaYF₄ β-NaYF₄	160	8	1.2	1.0	Sphere Rod	21.2
β -NaYF ₄	180	8	1.2	1.0	Rod	23.0
β -NaYF ₄	200	8	1.2	1.0	Rod	24.7
α-NaYF ₄	200	1	1.2	1.0	Sphere	12.3
α-NaYF₄ β-NaYF₄	200	2	1.2	1.0	Sphere Rod	14.0
β -NaYF ₄	200	6	1.2	1.0	Rod	21.3
β -NaYF ₄	200	8	1.2	1.0	Rod	24.7
β -NaYF ₄	200	10	1.2	1.0	Rod	20.0
β -NaYF ₄	200	12	1.2	1.0	Rod	23.2
β -NaYF ₄	200	24	1.2	1.0	Spindle	32.1
α-NaYF₄ β-NaYF₄	200	8	0.3	1.0	Sphere Rod	32.8
α-NaYF₄ β-NaYF₄	200	8	0.6	1.0	Sphere Rod	26.1
α-NaYF₄ β-NaYF₄	200	8	0.9	1.0	Rod	23.7
β -NaYF ₄	200	8	1.2	1.0	Rod	24.7
β -NaYF ₄	200	8	1.8	1.0	Sphere	10.4
β -NaYF ₄	200	8	1.2	0.12	Prism	50.9
β -NaYF ₄	200	8	1.2	0.48	Prism	58.5
β -NaYF ₄	200	8	1.2	0.60	Plate	24.0
β -NaYF ₄	200	8	1.2	0.84	Plate	43.2
β -NaYF ₄	200	8	1.2	1.2	Rod	34.0

Samples	Excitation (nm)	Emission (nm)	Lifetime (ms)	Fitness parameter X ^{2.}
NaYF ₄ :20%Eu ³⁺	394	592	1.080	0.998
	394	615	1.130	0.999
	394	690	1.090	0.998
	394	696	0.972	0.997
Y(OH) ₃ :20%Eu ³⁺	394	591	0.231	0.999
	394	615	0.224	0.999
	394	690	0.219	0.999
	394	696	0.227	0.999
NaYF ₄ :20%Tb ³⁺	379	491	0.568	0.997
	379	546	0.732	0.999
	379	585	0.746	0.999
	379	620	0.765	0.999

Table S3. The lifetimes of different transition of Eu^{3}	⁺ and Tb ³⁺ in	NaYF ₄ :20%Eu ³⁺ /Tb ³⁺	and Y(OH)3:20%Eu3+	nanorods.
--	--------------------------------------	--	--------------------	-----------

Figure S1. XRD patterns of NaYF₄:20%Eu³⁺ synthesized using different amount of NaOH. Other reaction conditions are kept at OA/OM (17/3 mL) and H₂O (9 mL) under 200 °C for 8 h.

Figure S2. TEM image of NaYF₄:20%Eu³⁺ nanorods synthesized using OA/OM (17/3 mL) as capping agents. Other reaction conditions are kept at NaOH (1.2 g), ethanol (10 mL), NaF (1.0 M), and H₂O (9 mL) under 200 °C for 8 h.

Figure S3. SEM images of NaYF₄:20%Tb³⁺ nanorods synthesized using (a) OA (20 mL), (b) OA/OM (17/3 mL) as capping agents and $Y(OH)_3:20\%Tb^{3+}$ nanorods synthesized using (c) OM (20 mL) as capping agent. Other reaction conditions are kept at NaOH (1.2 g), ethanol (10 mL), NaF (1.0 M), and H₂O (9 mL) under 200 °C for 8h.

Figure S4. SEM image of NaYF₄:20%Tb³⁺ nanorods synthesized using OA/OM (a) 17/3 mL, (b) 10/10 mL, (c) 3/17 mL as capping agents. Other reaction conditions are kept at NaOH (1.2 g), ethanol (10 mL), NaF (1.0 M), and H₂O (9 mL) under 200 °C for 8 h.

Figure S5. Photoluminescence lifetime spectra of β -NaYF₄:20%:Eu³⁺ nanorods synthesized using OA/OM (17/3 mL) as capping agents. Other reaction conditions are kept at NaOH (1.2 g), ethanol (10 mL), NaF (1.0 M), and H₂O (9 mL) under 200 °C for 8h.

Figure S6. Photoluminescence lifetime spectra of Y(OH)₃:20%Eu³⁺ nanorods synthesized using OM (20 mL) as capping agent. Other reaction conditions are kept at NaOH (1.2 g), ethanol (10 mL), NaF (1.0 M), and H₂O (9 mL) under 200 °C for 8h.

Figure S7. Photoluminescence lifetime spectra of β -NaYF₄:20%:Tb³⁺ nanorods synthesized using OA/OM (17/3 mL) as capping agents. Other reaction conditions are kept at NaOH (1.2 g), ethanol (10 mL), NaF (1.0 M), and H₂O (9 mL) under 200 °C for 8h.

Figure S8. Photoluminescence variation of NaYF₄:20%Eu³⁺ nanorods with the amounts of (a) NaOH, (b) NaF, (c) ethanol, and the (d) reaction temperature and (e) time for synthesis. Other reaction conditions are kept at OA/OM (17/3 mL), and H₂O (9 mL).

Scheme S1. Schematic illustration of phase transformation of α -NaYF₄ to β -NaYF₄ with the changes of the synthetic parameters and their

corresponding morphologies.

