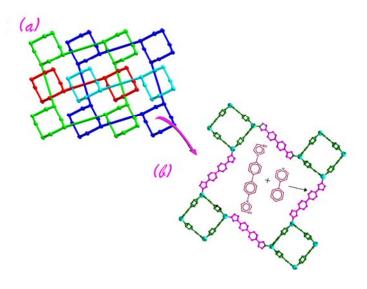
Electronic Supplementary Information (ESI)

Structure diversities of ten entangled coordination polymers assembled from reactions of Co(II) or Ni(II) salts with 5-(pyridin-4-yl)isophthalic acid in the absence or presence of auxiliary N-donor ligands

Fei-Long Hu,^{ab} Mi Yan,^b Yun-Qiong Gu,^b Li-Gang Zhu,^b Sheng-Lan Yang,^b Han Wei,^b and Jian-Ping Lang^{*a}


^{*a*} College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China.

^b College of Chemistry and Material, Yulin Normal University, Yulin 537000, P. R. China

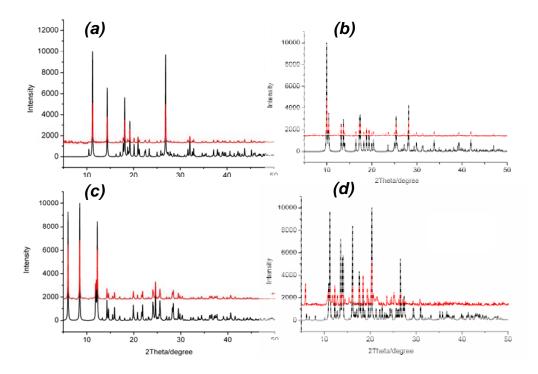
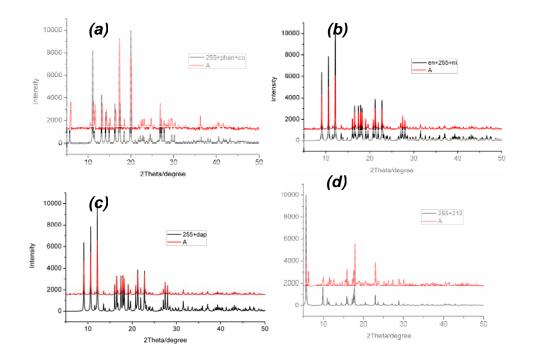

Table of Contents

Fig.	S5 .	The TGA	curves	for com	oounds 1	-3.		··S	5
------	-------------	---------	--------	---------	----------	-----	--	-----	---


Magnetic properies S7

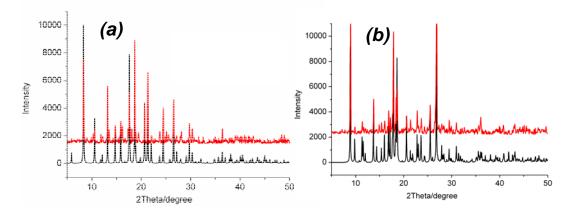

Fig. S1. (*a*) The 4-fold interpenetrating structure of **10**. (*b*) The pillar which formed by the short and/or long pillars.

Fig. S2. PXRD patterns for **1-4**. (*a*) simulated (black) and single-phase polycrystalline sample (red) of **1**. (*b*) simulated (black) and single-phase polycrystalline sample (red) of **2**. (*c*) simulated (black) and single-phase polycrystalline sample (red) of **3**. (*d*) simulated (black) and single-phase polycrystalline sample (red) of **4**.

Fig. S3. PXRD patterns for **5-8**. (*a*) simulated (black) and single-phase polycrystalline sample (red) of **5**. (*b*) simulated (black) and single-phase polycrystalline sample (red) of **6**. (*c*) simulated (black) and single-phase polycrystalline sample (red) of **7**. (*d*) simulated (black) and single-phase polycrystalline sample (red) of **8**.

Fig. S4. PXRD patterns for **8-10**. (*a*) simulated (black) and single-phase polycrystalline sample (red) of **9**. (*b*) simulated (black) and single-phase polycrystalline sample (red) of **10**.

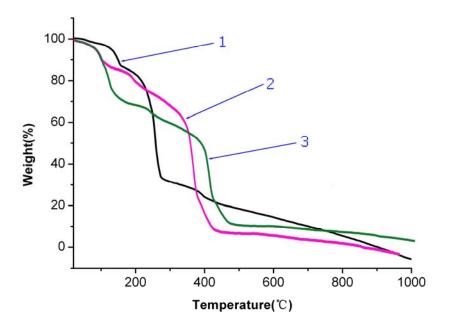


Fig. S5. The TGA curves for compounds 1-3.

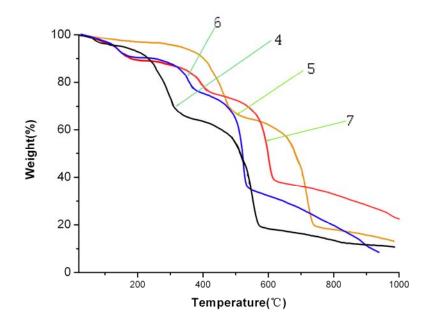
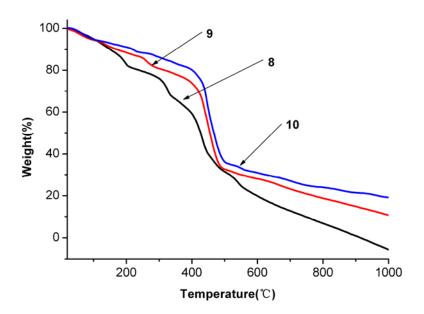
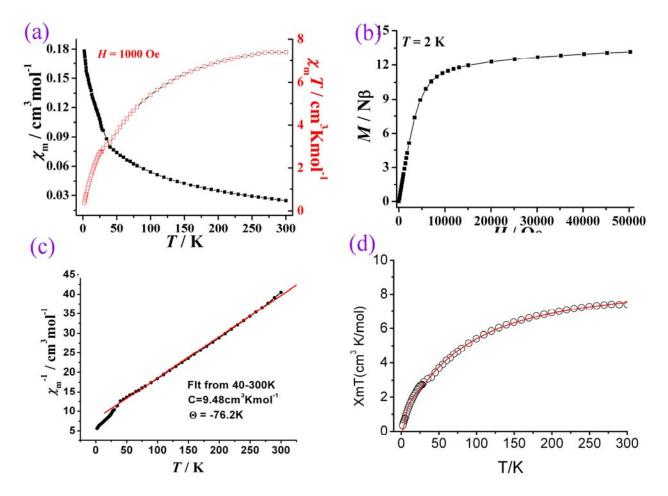


Fig. S6. The TGA curves for compounds 4-7.




Fig. S7. The TGA curves for compounds 8-10.

Magnetic properties

In order to further study the magnetic interactions in 3, the noncritical-scaling theory with the following simple phenomenological Eqn (1) was used to fit experimental data from 300 to 2K.

$$\chi_m T = A \exp(-E_1/kT) + B \exp(-E_2/kT)$$
(1)

Here, A+B equals the high-temperature Curie constant for Co(II) cluster unit, and E_1 and E_2 represent the activation energies corresponding to the spin-orbit coupling and antiferromagnetic exchange interactions, respectively. The best fit of the experimental data gives A + B = 9.1 cm³Kmol⁻¹, E1/k=86.5K, E2/k=7.2K. These values indicate that dominant antiferromagnetic interactions between Co(II) ions exist in **3**.

Fig. S8. (*a*) $\chi_m T$ vs. T curve of **3** under 0.1 T applied field. (*b*) Field dependence of the magnetization of **3** at 2K. (*c*) Plot of χ^{-1} vs. T and the fit of Curie-Weiss law (red curve) of **3**. (*d*) Temperature dependence of magnetic susceptibilities in the forms of $\chi_m T$ at an applied field of 1 kOe and red solid line shows the best fit at 2–300 K.