Supporting materials (CrystEngComm):

Unusual silver nanostructures prepared by Aerosol Spray Pyrolysis

Anna A. Semenova^a, Vladimir K. Ivanov^b, Sergey V. Savilov^c, Eugene A. Goodilin^{a,b,c,*}

^aDepartment of Materials Science, Moscow State University, Lenin Hills, Moscow 119991, Russia, * - corresponding author, e-mail: <u>goodilin@inorg.chem.msu.ru</u>; Tel. +7 495 9394609 ^bKurnakov's Institute of General and Inorganic Chemistry of RAS, Moscow, Leninskiy prospect ^cFaculty of Chemistry, Moscow State University, Moscow, Russia, 119992

Fig.S1. Micrographs of a starfish nanoparticle held under the beam of electron microscope, a - original image, b, c - the same after 10 and 20 sec. of holding in the view field of the SEM microscope, respectively.

Fig.S2. A magnified view of a cuboid superficially decorated with silver nanoparticles.

Fig.S3. Columnal growth of particles in the condensation zone. a - the resulting structure, b - a magnified view of the beginning of growth.

Fig.S4. Decomposition of ultrasonic mist of aqueous diaminsilver hydroxide in air at $750 - 950^{\circ}$ C. (a) typical plasmonic peaks for a mixture of silver nanoparticles produced from the mist at 950° C (taken from the condensation zone), (b - d) a hierarchic self – assembled planar structure found in a condensed product after mist pyrolysis decorated around its perimeter with AgNPs of spherical (b) or cubic (c) shapes, covered, in turn with smaller AgNPs.