Electronic supplementary information

Synthesis and growth mechanism of triangular Ag-rich AgAu alloy prisms in an aqueous solution in the presence of PVP, citrate and $\mathrm{H}_{2} \mathrm{O}_{2}$

Masaharu Tsuji,* a,b,c Atsushi Yajima, ${ }^{b}$ Mika Hamasaki, ${ }^{d}$ Masashi Hattoria, Masahito Mitaraie and Hirofumi Kawazumid ${ }^{d}$
a Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580, Japan. Fax: +81-092-583-7815; Tel.: +81-092-583-7815; E-mail:tsuji@cm.kyushu-u.ac.jp
${ }^{\text {b }}$ Department of Automotive Science, Graduate School of Integrated Frontier Sciences, Kyushu University, Kasuga, 816-8580, Japan
${ }^{\text {c }}$ Department of Applied Science for Electronics and Materials, Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580, Japan
${ }^{d}$ Department of Biological and Environmental Chemistry, School of Humanity-oriented Science and Technology, Kinki University, lizuka 820-8555, Japan
${ }^{e}$ Department of Mechanical and Control Engineering, Tokuyama College of Technology, Shunan 745-8585, Japan
(a) colorless and transparence

(b) yellow

(c) orange

(d) red

(e) violet

(f) bluish purple

(g) blue

Fig. S1. Color changes of $\mathrm{HAuCl}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O} / \mathrm{AgNO}_{3} / \mathrm{NaBH}_{4} / \mathrm{PVP} / \mathrm{Na}_{3} \mathrm{CA}^{2} / \mathrm{H}_{2} \mathrm{O}_{2}$ solution at $\mathrm{Au} / \mathrm{Ag}$ molar ratio of 4% (a) before and (b)-(g) after addition of NaBH_{4}.

Fig. S2. UV-Vis spectra of products after addition of NaBH_{4} to $\mathrm{HAuCl}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O} / \mathrm{AgNO}_{3} / \mathrm{PVP} / \mathrm{Na}_{3} \mathrm{CA}$ solution at Au/Ag molar ratio of 4%.

Fig. S3. Colors of product solutions of (a) Ag prisms obtained from $\mathrm{AgNO}_{3} / \mathrm{NaBH}_{4} / \mathrm{PVP} / \mathrm{Na}_{3} \mathrm{CA}^{2} / \mathrm{H}_{2} \mathrm{O}_{2}$ solution and (b)-(e) Ag-rich AgAu alloy prisms obtained from $\mathrm{HAuCl}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O} / \mathrm{AgNO}_{3} / \mathrm{NaBH}_{4} / \mathrm{PVP} / \mathrm{Na}_{3} \mathrm{CA}^{2} / \mathrm{H}_{2} \mathrm{O}_{2}$ solution at $\mathrm{Au} / \mathrm{Ag}$ molar ratios of $2.5-5 \%$.

Fig. S4. Colors of product solutions obtained after various timing of addition of $\mathrm{HAuCl}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ to $\mathrm{AgNO}_{3} / \mathrm{NaBH}_{4} / \mathrm{PVP} / \mathrm{Na}_{3} \mathrm{CA} / \mathrm{H}_{2} \mathrm{O}_{2}$ solution at $\mathrm{Au} / \mathrm{Ag}$ molar ratio of 4%.

Fig. 5. UV-Vis spectra of Ag-rich AgAu prisms after addition of $\mathrm{H}_{2} \mathrm{O}_{2}$. AgAu prisms were prepared at $\mathrm{Au} / \mathrm{Ag}$ molar ratio of 4%. The concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ after addition was 7.0 mM .

