Synthon polymorphs of sulfacetamide–acetamide cocrystal based on N–H…O=S and N–H…O=C hydrogen bonding†

N. Rajesh Goud, and Ashwini Nangia*

School of Chemistry, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Central University PO, Hyderabad 500 046, India. E-mail: ashwini.nangia@gmail.com

Electronic Supplementary Information[†]

Table S1 List of polymorphic molecules with the SO₂-NH-CO fragment in Organic crystal structures retrieved from the Cambridge Structural Database (CSD, ver. 5.34, Conquest 1.15, November 2012 release).

Table S2 Hydrogen bond synthon patterns (rings, chains, etc.) in polymorphic compounds with the SO_2NHCO functional group (listed in Table S1).

Table S3 CSD Refcodes of neutral polymorphic cocrystals retrieved from the last full release of the CSD, ver. 5.34, Conquest 1.15, November 2012 release).

Entry	Cocrystal Polymorph	REFCODEs
1		ABEKUN ABEKUN01 ABEKUN02
2		ABUNIU ABUNIU01
3		ACOYOG ACOYOG01

4	о Ш	AJAJEA
		AJAJEA01
5		
5	A A A NC A CN	ANTCVB12
		ANTCYB11
	NC	ANTCYB13
		ANTCYB14
		ANTCYB15
		ANTCYB16
6		ANIMEC
0		ANUMEC01
		TH COMECOT
7		DIVENO1
/		BIVSIJOI
		DIVSIJ02
	но	
8	o 	CAZLAR,
	S S Br Br	CAZLAR01
		CAZLAR02
	s' 's Br	
9	он	COHWIF,
		COHWIF02,
		COHWIF03
		COHWIF01
	\uparrow	
	ОН	
10	A ș	DOKGUG
		DOKGUG01
•	5	

11		DURZAR DURZAR01
12		EFOZAB, EFOZAB03 EFOZAB01 EFOZAB04 EFOZAB02
13		ELEGUY ELEGUY01
14	HO HO HO HO HO HO HO HO HO HO HO HO HO H	ENAZOI ENAZOI01
15		EPUPUB EPUPUB01
16		EXUQUJ EXUQUJ01
17		FAHLEF01 FAHLEF02

18	0 ₂ N	FIHYEA
		FIHYEA02
	0,N	
	2	
19	° NH O	HADKUT
		HADKUT01
20		UFTOG
20		LIETOCO2
	И ноос соон	JETOG02
21	//NH	IJIBEJ
	И ноос	IJIBEJ01
	С С ОН	
	н,с Исн,	
22		KIBOOC
	F ₅ C ₆ ———————————————————————————————————	KIBOOC01
		MIDQUEUI
	F ₅ C ₈ NH ₂	
23	CN A	KIHYOQ
_		KIHYOQ01
24	CH ₃ H ₃ C	LOCVOO
	$(\cap Y \cap) \rightarrow $	
	CH3	
1	CH3	1

		I
25	CONH ₂	LOFKIB
		LOFKIB01
		LOTINDOT
	CONH-	
2.6	F) (IN INCOM
26	ĺ	MIYKOU
		MIYKOU01
	F Y	
	F	
27	ОН	MOXVIE
21		
		MOXVIF01
	$\left[\left(\begin{array}{c} 1 \\ 1 \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \right] \left(\begin{array}{c} 1 \\ 1 \end{array}\right)$	
	сон	
28	0,	MUROXA
	ИНСН	MUDOXA01
		MUKOAA01
	н _г м' ноос—соон	
29	0 0	NAPYMA
		ΝΔΡΥΜΔ01
20		NADGOD
30	~z"	NAKSOP
		NARSOP01
		NARSOP02
	l.	
31	o.	NITRIR
		NITRID01
1		
	H ₃ C CH ₃ NC CN	

32		NOVSIA NOVSIA01
33		NUGZEV NUGZEV01
34		NUKWEW NUKWEW01
35	COMe COMe COMe COMe	NUKXEX NUKXEX01
36	CO ₂ H N N N	ODOBIT ODOBIT01
37	NC CN	PTZTCQ PTZTCQ01
38	OH O	QUIDON QUIDON01 QUIDON02

39	CONH ₂ OEt	QULLUF QULLUF01 QULLUF02
	ОН	
40	S S NC CN	RIFQAY RIFQAY01
41	Br COOH COOH	RIWWEA RIWWEA01
42		RURROM RURROM01
43		SAYMUB SAYMUB01
44		TAMBUE TAMBUE01
45		TECCAF01 TECCAF02

46		TEHNAW TEHNAW01
47	H ₂ N H ₂ N COOH	TIPWIY TIPWIY01
48	Me ₂	TONDUV TONDUV02
49	O NH S NH ₂	TUPRBN01 TUPRBN10
50	HOOC COOH	ULAWAF ULAWAF01 ULAWAF02
51		UNEZAO UNEZAO01
52	OEt HOOC COOH	VAKTOS VAKTOS01

53	соон ^{МН} 2	VEJXAJ
	•	VEJAAJUI
	HOOC NH2	
54	CONH,	VUHFIO
	OFI SS	VUIIIIIOUI
55	CH. O ₂ N NO ₂	VUJSOJ VUJSOJ01
56		WANNUV WANNUV01
		WAININU VUI
57		WATREP,
		WATREP01 WATREP04
	HO H ₃ C CH ₃	WATREP02
	CI	WATREP03
58	H ₂ NOC	WOBQEK
		WOBQEK01
59		WOTZAG WOTZAG01
	Ph Ph CH ₃	

60	CONH ₂ HOOC NO ₂	WUZHOP
		WUZHOP01
	OEt	
	NO ₂	
61	PA PA	XETZIG
		XEIZIG01
	3 3 0	
62	ноос	XOLHUC
		XOLHUC01
		XOLHUC02
63	OMe CH ₃	YABHAM
		YABHAM01
	HO	
64	ноос	ZODWIY
		ZODWIY01
	H ₂ N-CONH ₂	
65	F	ZZZGMW01
		ZZZGMW02
66	NMe ₂ HO CH ₃	EWAPAU
		EWAPAU01
	Л ОН	

67	<i>и</i> солн	EXAPID
		EXAPID01
	сн, он	
68	ОН	UBUJIM
		UBUJIM01
	н,с-	
(0)		DANOUG
69	COOH	PANQUS
		PANQUSUI
70	ноос	AWIHOE02
		AWIHOE03
		AWIHOE04
	TH _N N COO	AWIHOE05
	с. 	AWIHOE06
		AWIHOE07
		AWIHOE10
71	т	YASGOO
	8	YASGOQ01
		YASGOQ02
		YASGOQ03
72	N HOOC	WOQBAF
		WOQBAF01
	N H ₃ C COOH	

Fig. S1 Overlay of SACT and ACT molecules in cocrystal form 1 (blue) and 2 (magenta).

Fig. S2 Comparison of PXRD patterns of the samples obtained in the grinding experiments of 1:1 mixture of SACT and ACT. Solvent used in grinding experiments is indicated on the right. The resulting powder pattern did not follow any trend based on the polarity of solvent used.

Carbon No.	SACT-ACT-FORM-1	SACT-ACT-FORM-2
8	20.8	20.3
10	24.4	25.4
2,6	112.9	111.4, 113.2
4	123.1	120.2
5	129.3	127.5
3	134.3	132.7
1	154.6	154.5
9	172.8	173.5
7	175.3	175.8

Table S4 ss-NMR ¹³C chemical shifts (δ , ppm) of SACT–ACT cocrystal polymorphs.

Fig. S3 IR and Raman spectra of SACT-ACT cocrystal polymorphs.

Fig. S4 Heat-cool-heat DSC heating curve of SACT-ACT Form 2 indicated that the high temperature phase is form 1.

Eqn. S1 Calculation of melting point of SACT-ACT metastable form 2 (taken from ref. 15).

A T T

$$T_{fus(form 2)} = \frac{\Delta H_{fus(form 2)} \times T_{fus(form 1)} \times T_{trs}}{(\Delta H_{fus(form 2)} \times T_{fus(form 1)}) + (T_{trs} \times \Delta H_{fus(form 1)}) - (T_{fus(form 1)} \times \Delta H_{fus(form 1)})}$$
$$T_{fus(form 2)} = \frac{32.3 \times 106.5 \times 79}{(106.5 \times 32.3) + (79 \times 29.5) - (106.5 \times 29.5)} = 103.4^{\circ} \text{ C}$$
$$\Delta H_{fus} \text{ (form 2)} = \text{Enthalpy of fusion of form 2 (Enthalpy of fusion of form 1 + Enthalpy of form 1 + Enthalpy of fusion of form 2 (Enthalpy of fusion of form 1 + Enthalpy of fusion form 1 + Enthalpy fusion$$

Transition) = 32.3 kJ/mol T_{fus} (form 1) = Temperature of fusion of form 1 = 106.5°C T_{trs} = Temperature of transition from form 2 to form 1 = 79°C S21

 ΔH_{fus} (form 1) = Enthalpy of fusion of form 1 = 29.5 kJ/mol T_{fus} (form 2) = Temperature of fusion of form 2 (calculated) = 103.4°C

Form 1

30°C

60°C

90°C

103°C

Form 2

30°C 83°C 81°C 82°C

Fig. S5 HSM snapshots of SACT-ACT cocrystal polymorphs. Significant morphological changes were observed between 81-83 °C in form 2 whereas form 1 exhibited clean melting behavior.

Fig. S6 Semi-quantitative E/T curves to show the stability of SACT–ACT polymorphs. Form 2 is the thermodynamic polymorph at absolute zero ($-273 \,^{\circ}$ C) and up to RT. Form 2 undergoes a phase transition at 83 $^{\circ}$ C to form 1. Form 1 is stable from 83 $^{\circ}$ C up to the melting temperature of 107 $^{\circ}$ C. Form 2 is stable between 25-83 $^{\circ}$ C, which is in agreement with the slurry and grinding experiments of form 1 converting to form 2, and form 2 being stable to these conditions. The dashed line indicates that the polymorph has transformed to another form at that temperature, T_{trs}.

Fig. S7 (a) Experimental PXRD of SACT–ACT form 1 after neat grinding in ball mill for 30 min matches with that of form 2. There is no change for form 2. (b) Experimental PXRD of a 1:1 mixture of SACT–ACT form 1 and 2 converted to form 2 after neat grinding in ball mill for 10 min. (c) Experimental PXRD of SACT–ACT form 2 did not show any change after neat grinding in ball mill for 3 h.

Fig. S8 Melt cooling of SACT–ACT form 1 or form 2 resulted in the crystallization of form 1 in either case, consistent with the Ostwald's Law of Stages. Thus melt cooling establishes form 1 as the kinetic, metastable modification.

Fig. S9 IDR curves of SACT-ACT polymorphs in pH7 buffer medium.

Table S5 Intrinsic dissolution rates of SACT polymorphs along with their molar extinction coefficient (ϵ), and AUC values. The number of times enhancement of IDR and AUC with respect to SACT is given in parentheses.

	Molar Extinction	Equi. Sol.	IDR	AUC _{0-4h}
Compound	coefficient (/mM/cm)	(g/L)	$(mg/cm^2/min)$	(mg h/L)
SACT	22.8	14.5	2.18	64,763
SACT-	17.9		3.4 (x 1.57)	105,679 (x1.63)
ACT				
form 1				
SACT-	19.9		2.8 (x 1.27)	80,853 (x1.25)
ACT				
form 2				

Fig. S10 Stability measurement at the end of the solubility experiment (24 h) in the slurry medium. (a) PXRD of SACT at the end of the equilibrium solubility experiment matches with the calculated XRD lines of the crystal structure, indicating form stability. (b) PXRD of SACT–ACT form 1 at the end of the equilibrium solubility experiment matches with the calculated XRD lines of SACT, indicating dissociation of the cocrystal. (c) PXRD of SACT–ACT form 2 at the end of the equilibrium solubility experiment (24 h) matches with the calculated XRD lines of SACT, indicating dissociation of the cocrystal.

Fig. S11 PXRD plots of SACT and its cocrystal polymorphs at the end of the dissolution experiment (4 h). (a) PXRD of SACT–ACT form 1 at the end of the dissolution experiment (4 h) matches with the calculated XRD lines of SACT, indicating dissociation of the cocrystal. (b) PXRD of SACT–ACT form 2 at the end of dissolution experiment (4 h) matches with the calculated XRD lines of SACT, indicating dissociation of the cocrystal.

Experimental Section

Phase transformation experiments

Grinding experiments were done on 100 mg scale. Competitive grinding experiments were carried out on 1:1 stoichiometric ratio of the polymorphs (100 mg each). A Retsch mixer-mill equipped with a 5 mL stainless steel grinding jar and SS balls of 4 mm diameter was used for mechanical grinding. Slurry experiments were also done on 100 mg scale. Competitive slurry experiments were carried out on 1:1 stoichiometric ratio of the polymorphs (100 mg each). Toluene (5 mL in each experiment) was used as solvent in slurry experiments.

Single crystal X-ray diffraction

Crystal structures of the polymorphs were collected on CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.55 with SCALE3 ABSPACK absorption correction, Xcalibur, EOS, Gemini measurement device and Mo-K α ($\lambda = 0.71073$ Å) radiation.¹ Data reduction and structure refinement was performed using OLEX2 software.² Non-hydrogen atoms were refined anisotropically. C–H hydrogen atoms were positioned geometrically and refined in the riding model approximation. The methyl group in the ACT molecule has relatively large ADPs due to libration of H atoms. Attempts to split the electron density over two locations gave negative s.o.f. for the second C position, and so the process was abandoned. A check of the final CIF file using PLATON³ did not show any missed symmetry. Hydrogen bond distances shown in Table 2 are neutron normalized to fix the D–H distance to its accurate neutron value in the X-ray crystal structures (O–H 0.983 Å, N–H 1.009 Å, and C–H 1.083 Å). After the final refinement, structure analysis and preparation of art works were carried out using MERCURY and X-SEED⁴ software. **Vibrational spectroscopy**

Thermo-Nicolet 6700 Fourier transform infrared spectrophotometer with NXR-Fourier transform Raman module (Thermo Scientific, Waltham, Massachusetts) was used to record IR and Raman spectra. IR was recorded on samples dispersed in KBr pellets. Raman spectra were recorded on samples contained in standard NMR diameter tubes or on compressed samples contained in a gold-coated sample holder. Data were analyzed using the Omnic software (Thermo Scientific, Waltham, Massachusetts).

Thermal analysis

Differential scanning calorimetry was performed on a Mettler-Toledo DSC 822e module (Mettler-Toledo, Columbus, Ohio). Samples were placed in crimped but vented aluminum pans for these experiments. The typical sample size is 3-5mg for the experiment. The temperature range for the heating curve was 30-150 °C and the sample was heated at a rate of 10° C/min. Samples were purged in a stream of dry nitrogen flowing at 80 mL/ min. Melting point of SACT-ACT form 2 was determined by heating the sample from 30-150 °C at a heating rate of 125 °C/min.

Powder X-ray diffraction

Powder X-ray diffraction of the polymorphs were recorded on Bruker D8 Focus diffractometer (Bruker-AXS, Karlsruhe, Germany) using Cu-K α X-radiation ($\lambda = 1.5406$ Å) at 40 kV and 30 mA power. X-ray diffraction patterns were collected over the 2 θ range 5–50° at a scan rate of 1° /min. Powder Cell 2.4 (Federal Institute of Materials Research and Testing, Berlin, Germany)⁵ was used for Rietveld refinement of experimental PXRD and calculated lines from the X-ray crystal structure. VT-PXRD was performed on the same instrument equipped with a variable temperature stage -TTK450 module. PXRD patterns for both the forms were collected at 30, 60, 80, 86 and 92 °C. All the powder patterns were plotted using Origin 7.0 software.

Hot stage microscopy

HSM was performed on a Wagner & Munz PolythermA Hot Stage and Heiztisch microscope. A Moticam 1000 (1.3 MP) camera supported by software Motic Image Plus 2.0ML is used to record images.

Solid-state NMR spectroscopy

Solid-state ¹³C NMR spectra were recorded on Bruker Avance 400 MHz spectrometer (Bruker-Biospin, Karlsruhe, Germany). SS-NMR measurements were carried out on Bruker 4-mm double resonance CP-MAS probe in zirconia rotors with a Kel-F cap at 5.0-kHz spinning rate with a cross-polarization contact time of 2.5 ms and a delay of 8 s. ¹³C NMR spectra were recorded at 100 MHz and referenced to the methylene carbon of glycine, and then recalibrated to the TMS scale ($\delta_{glycine} = 43.3$ ppm).

Cambridge Structural Database

The CSD (version 5.34, ConQuest 1.15, November 2012 release)⁶ was searched for cocrystal polymorphs. The parameters "all polymorphic structures with 3D coordinates determined", "no errors", "no polymeric", and "no ions" were searched to give 6539 hits. Crystal structures were visualized with Mercury 2.0, and 72 sets of cocrystal polymorphs were manually retrieved (3D coordinates reported for all polymorph sets). Crystal structures with any degree of disorder were excluded. Details of polymorphic cocrystal sets are listed in the Supporting Information, Table S3.

Dissolution and Solubility measurements

The solubility curves of cocrystal polymorphs were measured using the Higuchi and Connor method⁷ in pH 7 buffer medium at 30 °C. First, the absorbance of a known concentration of the polymorphs was measured at the given λ_{max} (SACT at 256 nm and SACT-ACT form 1 and 2 at 257 nm) in pH 7 buffer medium on Thermo Scientific Evolution 300 UV–vis spectrometer (Thermo Scientific, Waltham, MA). These absorbance values were plotted against several known concentrations to prepare the concentration vs. intensity calibration curve. From the slope of the calibration curves, molar extinction coefficients for the polymorphs were calculated. An excess amount of the sample was added to 6 mL of pH 7 buffer medium. The supersaturated solution was stirred at 300 rpm using a magnetic stirrer at 30 °C. After 24 h, the suspension was filtered through 0.45µ syringe filter. The filtered aliquots were diluted sufficiently, and the absorbance was measured at the given λ_{max} . IDR experiments were carried out on USP-certified Electrolab

TDT-08L dissolution tester (Mumbai, India). Dissolution experiments were performed for 4 hrs in pH 7 buffer medium at 37 °C. Prior to IDR estimation, standard curves for all the compounds were obtained spectrophotometrically at their respective λ_{max} . The calculated molar extinction coefficients were used to determine the IDR values. For IDR measurements, 500 mg of the compound was taken in the intrinsic attachment and compressed to 0.5-cm² disk using a hydraulic press 2.5 ton/in² pressure for 4 min. The intrinsic attachment was placed in a jar of 900 mL medium preheated to 37 °C and rotated at 150 rpm. 5 mL of the aliquot was collected at specific time intervals, and the concentration of the aliquots was determined with appropriate dilutions from the predetermined standard curves of the respective compounds. The IDR of the compound was calculated in the linear region of the dissolution curve (which is the slope of the curve or amount of drug dissolved/surface area of the disk) per unit time. The identity of the undissolved material after the dissolution experiment was ascertained by PXRD. The nature of the solid samples after disk compression and solubility/dissolution measurements were verified by PXRD.

References

- 1. CrysAlis CCD and CrysAlis RED, Versions 1.171.33.55, Oxford Diffraction, Oxford, 2008.
- 2. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Crystallogr.*, 2009, **42**, 339.
- 3. (a) A. L. Spek, PLATON: *A Multipurpose Crystallographic Tool*; Utrecht University: Utrecht, The Netherlands, 2002. (b) A. L. Spek, J. *Appl Crystallogr.*, 2003, **7**, 36.
- (a) L. J. Barbour, *Supramol. Chem.* 2001, 1, 189; (b) L. J. Barbour, *X-Seed, Graphical Interface to SHELX-97 and POV-Ray;* University of Missouri-Columbia: Columbus, MO, 1999.
- 5. Powder Cell, a program for structure visualization, powder pattern calculation and profile fitting. <u>http://www.ccp14.ac.uk/tutorial/powdcell/</u>.
- 6. Cambridge Structural Database, CSD, version 5.34, ConQuest 1.15, Nov 2013 update.
- 7. T. Higuchi and K. A. Connors, Adv. Anal. Chem. Instrum., 1965, 4, 117.