Supplementary information

Whewellite, CaC₂O₄·H₂O: structural study by a combined NMR, crystallography and modelling approach

Hélène Colas,^a Laure Bonhomme-Coury,^a Cristina Coelho Diogo,^b Frederik Tielens,^a Florence Babonneau,^a Christel Gervais,^a Dominique Bazin,^a Danielle Laurencin^c, Mark E. Smith,^{d,e} John V. Hanna,^e Michel Daudon,^f and Christian Bonhomme^{*a}

Figure S1. Powder XRD patterns of: a) synthetic whewellite, $CaC_2O_4 \cdot H_2O$. b) a mixture of whewellite, $CaC_2O_4 \cdot H_2O$ and wedellite, $CaC_2O_4 \cdot 2H_2O$ (obtained by precipitation).

Figure S2. Calculated powder XRD patterns for various models of CaC_2O_4 ·H₂O: non relaxed data (see Daudon *et al.*, 2009)⁵, in blue; all atoms relaxed, in red; and all atoms and cell relaxed, in green.

Table S1. Cell parameters after DFT optimization of the whewellite structure (from: Daudon *et al., J. Appl. Crystallogr.*, 2009, **42**, 109).

Table S2. Comparison of bond lengths after DFT relaxation.

Table S3. GIPAW data for all structural models.

Figure S1. Powder XRD patterns of: a) synthetic whewellite, $CaC_2O_4 \cdot H_2O$. b) a mixture of whewellite, $CaC_2O_4 \cdot H_2O$ and weddellite, $CaC_2O_4 \cdot 2H_2O$ obtained by precipitation.

red ticks: weddellite CaC₂O₄.2H₂O

Figure S2. Calculated powder XRD patterns for various models of CaC_2O_4 ·H₂O: non relaxed data (see Daudon *et al.*, 2009)⁵, in blue; all atoms relaxed, in red; and all atoms and cell relaxed, in green.

Table S1. Cell parameters after DFT optimization of the whewellite structure (from: Daudon *et al., J. Appl. Crystallogr.*, 2009, **42**, 109).

	Optimized cell parameters	Experimental cell parameters		
	(this work)	(Daudon, 2009) monoclinic, <i>P</i> 2 ₁ / <i>c</i>		
a/Å	6.3664	6.316 (2)		
b/Å	14.7597	14.541 (3)		
$c/{ m \AA}$	10.1451	10.116 (5)		
β/°	109.2977	109.1 (3)		
vol./Å ³	899.7437	878.2 (16)		

Table S2. Comparison of bond lengths after DFT relaxation.

d : bond length in Å , $\Delta d = d_{rel} - d_{non rel}$

from: Daudon et al., J. Appl. Crystallogr., 2009, 42, 109.

	Non re	laxed	All atoms relaxed		All atoms + cell relaxed	
Oxalate group						
	d		d	Δd	d	Δd
C1-C2	1.5657		1.5584	-0.0073	1.5735	0.0078
C3-C4	1.5411		1.5382	-0.0029	1.5484	0.0073
Calcium polyhedra						
Ca1-W2	2.4205		2.4370	0.0165	2.4249	0.0044
Ca1-O1	2.4270		2.4171	-0.0099	2.4610	0.0340
Ca1-O4	2.4311		2.4165	-0.0146	2.4350	0.0039
Ca1-O6	2.4331		2.4136	-0.0195	2.4565	0.0234
Ca1-O4	2.4622		2.4265	-0.0357	2.4846	0.0224
Ca1-O3	2.4622		2.4547	-0.0075	2.4684	0.0062
Ca1-O5	2.4639		2.5163	0.0524	2.5218	0.0579
Ca1-07	2.4951		2.5081	0.0130	2.5006	0.0055
<ca1-o></ca1-o>	2.4494		2.4487		2.4691	0.0197
Ca2-O2	2.4160		2.3995	-0.0165	2.4163	0.0003
Ca2-O2	2.4196		2.3998	-0.0198	2.4454	0.0258
Ca2-07	2.4274		2.4096	-0.0178	2.4493	0.0219
Ca2-O3	2.4323		2.4168	-0.0155	2.4710	0.0387
Ca2-O8	2.4409		2.4737	0.0328	2.4777	0.0368
Ca2-O1	2.4530		2.4431	-0.0099	2.4631	0.0101
Ca2-O6	2.4624		2.4643	0.0019	2.4488	-0.0136
Ca2-W1	2.5623		2.5711	0.0088	2.5893	0.0270
<ca2-o></ca2-o>	2.4517		2.4472		2.4701	0.0184
Hydrogen bonding	D-H	HA	D-H	HA	D-H	HA
W1-H108	0.9902	1.6815	1.0252	1.6244	1.0085	1.6474
W1-H2O5	0.9424	2.0454	0.9986	1.8853	0.9837	1.9573
W2-H3O5	0.9669	1.7546	1.0046	1.7528	0.9908	1.7542
W2-H4W1	0.9592	1.8829	1.0060	1.7797	0.9897	1.7542

Table S3. GIPAW data for all structural models.

