Multi-functional d¹⁰ metal-organic materials based on bis-pyrazole/pyridine ligands-supported by 2,6-di(3-pyrazolyl)pyridine with different spanning flexible dicarboxylate ligands: Synthesis, structure, photoluminescent and catalytic properties

Xiaoxi Zhang¹, Na Xing¹, Fengying Bai^{*2}, Lijuan Wan¹, Hui Shan¹, Yanan Hou¹, Yongheng Xing^{*1}, Zhan Shi³

¹ College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City, 11602

² College of Life Science, Liaoning Normal University, Dalian City, 11602

³ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China

*e-mail: <u>xingyongheng2000@163.com</u> tel: 0411-82156987

- Table S1. Selected bond lengths (Å) and angles (°) of the complexes 1-6
- Table S2. Bond distances (Å) and angles (°) of hydrogen bonds in the complexes 1-6
- Fig S1. The Solid-state IR spectra of complex 1 at a room temperature
- Fig S2. The Solid-state IR spectra of complex 2 at a room temperature
- Fig S3. The Solid-state IR spectra of complex 3 at a room temperature
- Fig S4. The Solid-state IR spectra of complex 4 at a room temperature
- Fig S5. The Solid-state IR spectra of complex 5 at a room temperature
- Fig S6. The Solid-state IR spectra of complex 6 at a room temperature
- Fig S7. PXRD powder patterns: a experimental PXRD for complex 1, b the simulated PXRD pattern calculated from single-crystal structure of complex 1.
- Fig S8. PXRD powder patterns: a experimental PXRD for complex **2**, b the simulated PXRD pattern calculated from single-crystal structure of complex **2**.
- Fig S9. PXRD powder patterns: a experimental PXRD for complex **3**, b the simulated PXRD pattern calculated from single-crystal structure of complex **3**.
- Fig S10. PXRD powder patterns: a experimental PXRD for complex **4**, b the simulated PXRD pattern calculated from single-crystal structure of complex **4**.
- Fig S11. PXRD powder patterns: a experimental PXRD for complex **5**, b the simulated PXRD pattern calculated from single-crystal structure of complex **5**.
- Fig S12. PXRD powder patterns: a experimental PXRD for complex **6**, b the simulated PXRD pattern calculated from single-crystal structure of complex **6**.
- Fig S13. The Solid-state UV–Vis spectra of H_2L^1 and complex 1, 2 at a room temperature
- Fig S14. The Solid-state UV–Vis spectra of H_2L^2 and complex 3-6 at a room temperature
- Fig S15. A view of the hydrogen bonds of complex 1 (a part of hydrogen atoms are omitted for clarity)
- Fig S16. A view of the hydrogen bonds of complex 2 (a part of hydrogen atoms are omitted for clarity)
- Fig S17. A view of the hydrogen bonds of complex 3 (a part of hydrogen atoms are omitted for clarity)
- Fig S18. A view of the hydrogen bonds of complex 5 (a part of hydrogen atoms are omitted for clarity

Complex 1					
Zn1-O3	2.058(4)	Zn1-N4	2.239(5)	Zn2-O4	2.059(4)
Zn1-O1	2.081(4)	Zn1-N2	2.194(5)	Zn2-O4 [#]	2.059(4)
Zn1-O2	2.130(4)	Zn2-O5	2.103(4)	Zn2-O5 [#]	2.103(4)
Zn1-N3	2.096(4)	Zn2-O7	2.159(4)	Zn2-O7 [#]	2.159(4)
O3-Zn1-O1	90.08(17)	O2-Zn1-N2	94.16(17)	O4-Zn2-O5	96.68(16)
O3-Zn1-O2	78.53(15)	O3-Zn1-N4	103.97(18)	O4 [#] -Zn2-O5	95.95(16)
O1-Zn1-O2	168.61(15)	N3-Zn1-N4	74.59(18)	O5 [#] -Zn2-O5	79.3(2)
O3-Zn1-N3	167.49(17)	N3-Zn1-N2	75.36(18)	O4-Zn2-O7	90.56(15)
O1-Zn1-N3	102.34(17)	N2-Zn1-N4	149.29(17)	O4 [#] -Zn2-O7	79.12(15)
N3-Zn1-O2	89.04(15)	O5#1-Zn2-O7	89.40(17)	O4-Zn2-O5 [#]	95.95(16)
O3-Zn1-N2	106.74(18)	O5-Zn2-O7	167.17(17)	O4#-Zn2-O5 [#]	96.68(16)
O1-Zn1-N2	89.13(18)	O4-Zn2-O4#	163.6(2)	O5#-Zn2-O7 [#]	167.16(17)
O1-Zn1-N4	91.17(17)	O4-Zn2-O7#	79.12(15)	O5-Zn2-O7 [#]	89.40(17)
O2-Zn1-N4	91.54(16)	O4#-Zn2-O7#	90.56(15)	O7-Zn2-O7 [#]	102.4(2)
Complex 2					
Zn-O1	1.936(3)	Zn-N3	2.113(5)	Zn-N2 ^{#1}	2.234(3)
Zn-O1 ^{#1}	1.936(3)	Zn-N2	2.234(3)	O1-Zn-O1 ^{#1}	134.3(2)
O1-Zn-N3	112.85(10)	O1 ^{#1} -Zn-N2	102.88(12)	O1#1-Zn-N2 ^{#1}	89.43(12)
O1#1-Zn-N3	112.85(10)	N3-Zn-N2	74.09(9)	N3-Zn-N2 ^{#1}	74.09(9)
O1-Zn-N2	89.43(12)	O1-Zn-N2 ^{#1}	102.88(12)	N2-Zn-N2 ^{#1}	148.17(19)
Complex 3					
Zn1-O2	2.001(2)	Zn1-N2	2.221(3)	Zn2-N8	2.104(3)
Zn1-N10	2.001(3)	Zn2-O1	1.987(3)	Zn2-N9	2.136(3)
Zn1-N3	2.113(3)	Zn2-N5	2.013(3)	Zn2-N7	2.255(3)
Zn1-N4	2.142(3)	O2-Zn1-N10	107.54(11)	O2-Zn1-N3	124.23(11)
N10-Zn1-N3	128.14(12)	N3-Zn1-N2	74.04(10)	N5-Zn2-N9	97.23(11)
O2-Zn1-N4	96.86(11)	N4-Zn1-N2	148.67(10)	N8-Zn2-N9	75.15(11)
N10-Zn1-N4	97.66(12)	O1-Zn2-N5	106.25(11)	O1-Zn2-N7	94.72(11)
N3-Zn1-N4	75.05(11)	O1-Zn2-N8	119.77(11)	N5-Zn2-N7	107.27(11)
O2-Zn1-N2	96.24(11)	N5-Zn2-N8	133.84(12)	N8-Zn2-N7	73.97(11)
N10-Zn1-N2	105.28(11)	O1-Zn2-N9	96.67(11)	N9-Zn2-N7	148.80(11)
Complex 4					
Zn1-O2	1.966(2)	Zn1-N9	2.305(3)	Zn2-N3	2.114(3)
-					

Table S1. Selected bond lengths (Å) and angles (°) of the complexes 1-6

Zn1-N1	2.005(3)	Zn2-O4	1.970(2)	Zn2-N2	2.191(3)
Zn1-N8	2.123(3)	Zn2-N6	2.003(3)	Zn2-N4	2.238(3)
Zn1-N7	2.172(3)	O2-Zn1-N1	118.99(10)	O2-Zn1-N8	111.43(10)
N1-Zn1-N8	129.26(10)	N8-Zn1-N9	73.09(10)	N6-Zn2-N2	90.56(10)
O2-Zn1-N7	99.18(10)	N7-Zn1-N9	147.60(10)	N3-Zn2-N2	75.14(10)
N1-Zn1-N7	91.69(10)	O4-Zn2-N6	116.93(11)	O4-Zn2-N4	94.40(10)
N8-Zn1-N7	74.66(10)	O4-Zn2-N3	116.72(10)	N6-Zn2-N4	107.13(11)
O2-Zn1-N9	95.33(10)	N6-Zn2-N3	126.10(11)	N3-Zn2-N4	73.45(10)
N1-Zn1-N9	106.30(10)	O4-Zn2-N2	100.49(10)	N2-Zn2-N4	148.58(10)
Complex 5					
Zn1-O1	1.994(6)	Zn1-N9	2.234(7)	Zn2-N3	2.120(7)
Zn1-N1	2.005(7)	Zn2-N6	1.997(8)	Zn2-N2	2.125(7)
Zn1-N8	2.099(7)	Zn2-O2	2.009(6)	Zn2-N4	2.157(7)
Zn1-N7	2.149(7)	O1-Zn1-N1	107.6(3)	O1-Zn1-N8	122.6(3)
N1-Zn1-N8	129.8(3)	N8-Zn1-N9	74.6(3)	O2-Zn2-N2	96.6(3)
O1-Zn1-N7	99.7(3)	N7-Zn1-N9	149.8(3)	N3-Zn2-N2	74.6(3)
N1-Zn1-N7	96.1(3)	N6-Zn2-O2	105.9(3)	N6-Zn2-N4	106.0(3)
N8-Zn1-N7	75.3(3)	N6-Zn2-N3	132.5(3)	O2-Zn2-N4	95.4(3)
O1-Zn1-N9	94.2(3)	O2-Zn2-N3	121.5(3)	N3-Zn2-N4	74.7(3)
N1-Zn1-N9	105.1(3)	N6-Zn2-N2	98.0(3)	N2-Zn2-N4	149.0(3)
Complex 6					
Zn1-N10	1.989(2)	Zn1-N4	2.189(3)	Zn2-N8	2.082(2)
Zn1-O1	2.000(2)	Zn2-O2	2.008(2)	Zn2-N9	2.158(3)
Zn1-N3	2.096(2)	Zn2-N5	2.017(2)	Zn2-N7	2.171(3)
Zn1-N2	2.187(3)	N10-Zn1-O1	109.02(10)	N10-Zn1-N3	131.39(11)
O1-Zn1-N3	118.91(9)	N3-Zn1-N4	75.25(10)	N5-Zn2-N9	92.98(10)
N10-Zn1-N2	111.25(10)	N2-Zn1-N4	148.99(9)	N8-Zn2-N9	75.98(10)
O1-Zn1-N2	93.46(10)	O2-Zn2-N5	109.65(10)	O2-Zn2-N7	100.88(10)
N3-Zn1-N2	74.79(10)	O2-Zn2-N8	120.91(10)	N5-Zn2-N7	105.13(10)
N10-Zn1-N4	94.55(10)	N5-Zn2-N8	128.54(11)	N8-Zn2-N7	75.46(10)
O1-Zn1-N4	94.04(10)	O2-Zn2-N9	93.37(10)	N9-Zn2-N7	151.40(9)

D—HA	<i>d(D-H)</i>	D(HA)	dD((DA)	∠DHA
Complex 1				
N1—H1DO7	0.8600	2.0375	2.8457	156.22
O1—H1EO5	0.8501	2.2012	2.9262	143.16
O1—H1FO1W	0.8500	2.0341	2.6709	131.11
O2W—H2WAO5	0.9599	1.8789	2.7896	157.43
O2W—H2WBO1W	0.9601	1.8902	2.6584	135.14
N5—H5AO6	0.8600	2.0310	2.8794	168.77
C7—H7 O2W	0.9300	2.3837	3.2712	159.55
С8—Н8О2	0.9300	2.4098	3.2791	155.56
Complex 2				
N1—H1DO1W	0.8600	1.9600	2.7918	162.37
O1W—H1WBO2	0.8499	1.9638	2.7384	151.01
Complex 3				
N1—H1AO3	0.8600	1.7973	2.6056	155.79
N6—H6AO1W	0.8600	1.9285	2.7802	170.40
Complex 4				
02W— H2WAO1	0.8499	1.9482	2.6211	135.27
N5— H5AO1W	0.8600	2.2690	3.1227	171.80
N10— H10AO2W	0.8600	2.0088	2.8384	161.76
C12—H12AO1	0.9300	2.5267	3.3290	144.65
С39—Н39АО2	0.9300	2.5523	3.3286	141.21
Complex 5				
N5—H5AO1W	0.8600	1.9919	2.8191	161.02
N10—H10AO2W	0.8600	1.9445	2.7812	163.95
Complex 6				
D1—H1CO5	0.8457	1.7803	2.6208	172.30
D1—H1DO2	0.8550	1.8286	2.6772	171.50
02W—H2WAO2	0.9267	1.8495	2.7610	167.30
O3W—H3WAO5	0.8480	1.8381	2.6466	158.83
O1W—H1WBO2W	0.8596	1.8920	2.6055	139.42
02W—H2WBO3W	0.8559	2.0121	2.8157	156.02
O3W—H3WBO1W	0.8398	2.0822	2.8297	148.02
N1—H1BO4	0.8600	1.8768	2.7146	164.28

Table S2. Bond distances (Å) a	and angles (°) of hydroge	n bonds in the complexes 1-6

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2013

N6—H6AO3W	0.8600	1.9154	2.7499	163.17
С5—Н5АО4	0.9300	2.4161	3.3118	161.66
С34—Н34АО3	0.9300	2.4042	3.3118	165.14

Fig S1. The Solid-state IR spectra of complex 1 at a room temperature

Fig S2. The Solid-state IR spectra of complex 2 at a room temperature

Fig S3. The Solid-state IR spectra of complex 3 at a room temperature

Fig S4. The Solid-state IR spectra of complex 4 at a room temperature

Fig S5. The Solid-state IR spectra of complex 5 at a room temperature

Fig S6. The Solid-state IR spectra of complex 6 at a room temperature

Fig S7. PXRD powder patterns: a experimental PXRD for complex 1, b the simulated PXRD pattern calculated from single-crystal structure of complex 1.

Fig S8. PXRD powder patterns: a experimental PXRD for complex 2, b the simulated PXRD pattern calculated from single-crystal structure of complex 2.

Fig S9. PXRD powder patterns: a experimental PXRD for complex 3, b the simulated PXRD pattern calculated from single-crystal structure of complex 3.

Fig S10. PXRD powder patterns: a experimental PXRD for complex 4, b the simulated PXRD pattern calculated from single-crystal structure of complex 4.

Fig S11. PXRD powder patterns: a experimental PXRD for complex 5, b the simulated PXRD pattern calculated from single-crystal structure of complex 5.

Fig S12. PXRD powder patterns: a experimental PXRD for complex 6, b the simulated PXRD pattern calculated from single-crystal structure of complex 6.

Fig S13. The Solid-state UV–Vis spectra of H_2L^1 and complex 1, 2 at a room temperature

Fig S14. The Solid-state UV–Vis spectra of H_2L^2 and complex 3-6 at a room temperature

Fig S15. A view of the hydrogen bonds of complex 1 (a part of hydrogen atoms are omitted for clarity)

Fig S16. A view of the hydrogen bonds of complex **2** (a part of hydrogen atoms are omitted for clarity)

Fig S17. A view of the hydrogen bonds of complex **3** (a part of hydrogen atoms are omitted for clarity)

Fig S18. A view of the hydrogen bonds of complex **5** (a part of hydrogen atoms are omitted for clarity