Supporting Information

Temperature-dependent enhancement of oxygen reduction reaction activity for interconnected nitrogen-doped carbon shells

Na Li, Changwen Hu, Ling Ren, * and Minhua Cao *

[†]Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081, P. R. China.

	C(%)	N(%)	O(%)
C-600	67.4	9.6	21.5
C-700	66.1	9.3	22.3
C-800	67.2	8.9	21.9
C-900	79.7	4.2	14.8

Table S1 C, N and O content of the samples

Figure S1 CV curves of Pt-C electrode at a scan rate of 10 mVs⁻¹ in O_2 and O_2 -saturated 0.1M KOH solution with 3M methanol

Figure S2 The dependence of n on potential for the C-800 electrode

For a more quantitative evaluation of the ORR electrocatalytic activity for the as obtained nanoshells, rotation-rate-dependent RDE measurements were performed using the Koutecky-Levich equation. ^{S1, S2} This equation was used to determine the number of electrons involved in oxygen reduction using carbon shells. This equation is valid for a first-order process with respect to the diffusion species, and the current density j is related to the rotation rate ω of the electrode according to

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{B\omega^{0.5}}$$
(S1)

where j_k is the kinetic current and B is Levich slope that is given by

$$B = 0.2nF(D_{O_2})^{2/3} v^{-1/6} C_{O_2}$$
(S2)

Here n is the number of electrons transferred in the reduction of one O₂ molecule, F is the Faraday constant (F = 96485 C/mol), DO₂ is the diffusion coefficient of O₂ in 0.1M KOH (DO2 = 1.9×10^{-5} cm²/s), v is the kinematics viscosity for KOH (v = 0.01 cm²/s) and CO₂ is concentration of O₂ in the solution (CO₂ = 1.2×10^{-6} mol/cm³). The constant 0.2 is adopted when the rotation speed is expressed in rpm. The corresponding curves were plotted for different potentials in Figure 4C.

Figure S3 Rotating ring-disk electrode (RRDE) voltammograms for oxygen reduction in O₂-saturated 0.1M KOH for C-800 electrode at 1200 rpm

Figure S4 CVs of C-Ni-800 on a GC electrode in N₂-saturated and O₂-saturated 0.1 M KOH.

Figure S5 XPS spectra of O 1s for the four carbon shell samples annealed at 600–900 °C

Figure S6 SEM images of the sample with obvious holes at inner structure (yellow arrows) after annealing at 400°C.

References

S1. K. P. Gong, F. Du, Z. H. Xia, M. Durstock and L. M. Dai, Science 2009, 323, 760-764.

S2. L. T. Qu, Y. Liu, J. B. Baek and L. M. Dai, ACS Nano 2010, 4, 1321-1326.