Supporting information for: New hydrogen-bond-aided supramolecular synthon: a case study of 2,4,6-trinitroaniline

Ivan V. Fedyanin* and Konstantin A. Lyssenko

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova st. 28, 119991 Moscow, Russian Federation

E-mail: octy@xrlab.ineos.ac.ru

Figure S1: Numbering scheme of the TNA molecule and general view of centrisymmetric dimer in crystal

^{*}To whom correspondence should be addressed

Multipole refinement

Refinement was performed in the following sequence:

- 1. Multipole populations P_{lm} and expansion/contraction coefficients κ and κ' were constrained to be the same for chemically-equivalent atoms (the so-called "chemical constraints"). The highest possible symmetry constraints was imposed on P_{lm} of particular molecular fragments: **mm2** for all heavy atoms except C(2) and C(6); **m** for C(2) and C(6). Multipole populations, monopole populations, κ , κ' and coordinates together with ADPs were refined consecutively until full convergence. Scale factor was refined between each step with all data.
- 2. The same sequence of refinement steps was used but with the chemical constraints removed.
- 3. Refinement was performed without symmetry constraints on oxygen and nitrogen atoms, and constaints for **m** symmetry for carbon atoms.
- 4. All symmetry constraints were removed, multipole population were refined together with κ' coefficient and monopole populations together with κ coefficients.

Figure S2: Residual electron density map in the average molecular plane for reflection data with $\sin \theta / \lambda \le 0.904 \text{ Å}^{-1}$. Contours step is 0.05 $e^{\text{Å}^{-3}}$, positive countours are drawn with a solid blue line and negative with a dashed red line.

Molecular geometry

	X-ray	B3LYP		B3LYF	P-D3	MP2		
		mon	dim	mon	dim	mon	dim	
01-N2	1.2412(2)	1.233	1.235	1.233	1.235	1.236	1.237	
O2-N2	1.2192(2)	1.216	1.216	1.216	1.216	1.223	1.224	
O3-N4	1.2273(2)	1.221	1.221	1.221	1.221	1.227	1.227	
O4-N4	1.2293(2)	1.221	1.220	1.221	1.220	1.227	1.227	
O5-N6	1.2281(2)	1.216	1.216	1.216	1.216	1.223	1.223	
O6-N6	1.2288(2)	1.233	1.232	1.233	1.232	1.236	1.235	
N1-C1	1.3327(2)	1.328	1.326	1.328	1.325	1.339	1.336	
N1-H1N	1.010	1.009	1.009	1.009	1.009	1.009	1.009	
N1-H2N	1.010	1.009	1.010	1.009	1.010	1.009	1.010	
N2-C2	1.4531(2)	1.468	1.461	1.465	1.458	1.470	1.464	
N4-C4	1.4523(2)	1.467	1.467	1.465	1.465	1.466	1.466	
N6-C6	1.4598(2)	1.468	1.470	1.465	1.467	1.470	1.472	
C1-C2	1.4328(2)	1.437	1.440	1.436	1.439	1.428	1.430	
C1-C6	1.4353(3)	1.437	1.441	1.436	1.440	1.428	1.431	
C2-C3	1.3852(2)	1.380	1.382	1.379	1.381	1.382	1.383	
C3-C4	1.3828(3)	1.382	1.380	1.381	1.379	1.379	1.378	
C4-C5	1.3906(3)	1.382	1.384	1.381	1.383	1.379	1.380	
C5-C6	1.3812(3)	1.380	1.379	1.379	1.378	1.382	1.380	
O1H1N	1.900	1.854	1.904	1.850	1.905	1.850	1.897	
O6H2N	1.961	1.854	1.849	1.850	1.845	1.850	1.839	

Table S1: Bond lengths in TNA and its dimer

Bond lenghts from ab-initio methods that are longer by more than 0.01 Å compared to experimental values are highlighted blue, and shorter by more than 0.01 Å are highlithed red, except for H-bonds.

CSD analysis

Figure S3: Plot of N-H...O vs. O...O distance in 135 crystal structures of 1-amino-2nitrocompounds where H-bonded dimer is formed

Charge density descriptors

The first line is $\rho(\mathbf{r})$, e Å ⁻³ , the second is $\nabla^2 \rho(\mathbf{r})$, e Å ⁻⁵ , and the third is ellepticity.										
	X-ray			B3LYP		B3LYP-D3		MP2		
	shade	isot	kap	mon	dim	mon	dim	mon	dim	
O(1)-N(2)	3.20	3.21	3.21	3.37	3.35	3.37	3.35	3.30	3.29	
	-5.5	-5.5	-5.5	-28.0	-27.8	-28.0	-27.9	-26.1	-26.1	

Table S2: Topological characteristics of intramolecular bond critical points in TNA and its dimer.

_	shade	isot	kap	mon	dim	mon	dim	mon	dim	
O(1)-N(2)	3.20	3.21	3.21	3.37	3.35	3.37	3.35	3.30	3.29	
	-5.5	-5.5	-5.5	-28.0	-27.8	-28.0	-27.9	-26.1	-26.1	
	0.19	0.19	0.19	0.12	0.12	0.12	0.12	0.13	0.13	
O(2)-N(2)	3.43	3.43	3.44	3.52	3.51	3.52	3.52	3.41	3.41	
	-10.8	-10.6	-10.6	-30.7	-30.6	-30.7	-30.7	-27.8	-27.7	
	0.12	0.12	0.12	0.11	0.11	0.11	0.11	0.12	0.12	
O(3)-N(4)	3.35	3.35	3.35	3.48	3.47	3.48	3.47	3.38	3.38	
	-10.8	-10.8	-10.7	-29.9	-29.8	-29.9	-29.8	-27.3	-27.3	
	0.10	0.10	0.10	0.12	0.12	0.12	0.12	0.13	0.13	
O(4)-N(4)	3.31	3.31	3.31	3.48	3.48	3.48	3.48	3.38	3.38	
	-7.5	-7.6	-7.4	-29.9	-29.9	-29.9	-29.9	-27.3	-27.3	
	0.10	0.10	0.10	0.12	0.12	0.12	0.12	0.13	0.13	
O(5)-N(6)	3.36	3.36	3.36	3.52	3.52	3.52	3.52	3.41	3.41	
	-11.0	-10.9	-10.8	-30.7	-30.7	-30.7	-30.7	-27.8	-27.8	
	0.10	0.10	0.10	0.11	0.11	0.11	0.11	0.12	0.12	
O(6)-N(6)	3.35	3.36	3.36	3.37	3.38	3.37	3.38	3.30	3.31	
	-8.9	-9.1	-8.7	-28.0	-28.1	-28.0	-28.2	-26.1	-26.1	
	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.13	0.13	
N(1)-C(1)	2.37	2.37	2.37	2.39	2.40	2.39	2.41	2.30	2.32	
	-22.7	-23.0	-23.0	-29.4	-29.6	-29.5	-29.7	-27.5	-27.7	
	0.22	0.22	0.22	0.17	0.18	0.17	0.17	0.17	0.18	
N(1)-H(1N)	2.13	2.16	2.06	2.29	2.29	2.29	2.29	2.25	2.25	
	-27.3	-28.1	-27.2	-47.7	-48.5	-47.8	-48.8	-48.8	-49.4	
	0.06	0.07	0.06	0.03	0.03	0.03	0.03	0.03	0.03	

	shade	isot	kap	mon	dim	mon	dim	mon	dim
N(1)-H(2N)	2.10	2.12	2.02	2.29	2.29	2.29	2.29	2.25	2.25
	-28.1	-28.8	-28.1	-47.7	-47.8	-47.8	-47.9	-48.8	-48.7
	0.05	0.06	0.05	0.03	0.03	0.03	0.03	0.03	0.03
N(2)-C(2)	1.80	1.81	1.80	1.79	1.81	1.80	1.82	1.78	1.79
	-12.6	-12.7	-12.6	-16.1	-16.5	-16.3	-16.7	-16.7	-17.0
	0.27	0.26	0.27	0.21	0.22	0.21	0.22	0.15	0.16
N(4)-C(4)	1.80	1.80	1.79	1.81	1.81	1.82	1.82	1.81	1.82
	-12.4	-12.5	-12.1	-16.7	-16.7	-16.8	-16.9	-17.6	-17.6
	0.20	0.20	0.20	0.17	0.17	0.17	0.17	0.12	0.13
N(6)-C(6)	1.82	1.83	1.82	1.79	1.78	1.80	1.79	1.78	1.78
	-13.3	-13.4	-13.1	-16.1	-15.9	-16.3	-16.1	-16.7	-16.5
	0.20	0.20	0.21	0.21	0.21	0.21	0.21	0.15	0.15
C(1)-C(2)	1.99	1.99	1.98	1.99	1.98	2.00	1.99	2.01	2.00
	-15.8	-15.7	-15.6	-20.1	-19.9	-20.2	-20.0	-20.6	-20.4
	0.23	0.23	0.23	0.21	0.21	0.21	0.21	0.21	0.21
C(1)-C(6)	1.97	1.97	1.96	1.99	1.98	2.00	1.99	2.01	2.00
	-15.6	-15.6	-15.4	-20.1	-19.9	-20.2	-20.0	-20.6	-20.4
	0.21	0.21	0.21	0.21	0.20	0.21	0.20	0.21	0.20
C(2)-C(3)	2.19	2.19	2.19	2.21	2.20	2.21	2.21	2.18	2.18
	-18.6	-18.7	-18.8	-23.6	-23.5	-23.7	-23.6	-23.4	-23.3
	0.24	0.24	0.25	0.23	0.22	0.23	0.22	0.22	0.22
C(3)-C(4)	2.17	2.17	2.17	2.21	2.22	2.21	2.22	2.20	2.21
	-19.1	-19.0	-19.1	-23.8	-24.0	-23.9	-24.1	-24.0	-24.1
	0.23	0.22	0.23	0.20	0.21	0.20	0.21	0.20	0.21
C(3)-H(3)	1.88	1.93	1.85	1.99	1.99	1.99	1.99	1.95	1.95
	-18.2	-18.9	-18.0	-26.7	-26.7	-26.8	-26.8	-26.1	-26.0
	0.03	0.04	0.03	0.00	0.00	0.00	0.00	0.01	0.01
C(4)-C(5)	2.16	2.16	2.16	2.21	2.20	2.21	2.20	2.20	2.20
	-18.5	-18.4	-18.5	-23.8	-23.8	-23.9	-23.9	-24.0	-24.0
	0.23	0.23	0.23	0.20	0.20	0.20	0.20	0.20	0.20

Table S2: $\rho(\mathbf{r})$ characteristics in BCPs (continued)

	shade	isot	kap	mon	dim	mon	dim	mon	dim	
C(5)-C(6)	2.20	2.20	2.20	2.21	2.21	2.21	2.22	2.18	2.19	
	-18.5	-18.6	-18.7	-23.6	-23.7	-23.7	-23.8	-23.4	-23.4	
	0.25	0.25	0.26	0.23	0.23	0.23	0.23	0.22	0.22	
C(5)-H(5)	1.83	1.85	1.80	1.99	1.99	1.99	1.99	1.95	1.95	
	-17.0	-17.5	-16.9	-26.7	-26.8	-26.8	-26.8	-26.1	-26.1	
	0.03	0.03	0.03	0.00	0.00	0.00	0.00	0.01	0.01	
H(1N)O(1)	0.20	0.19	0.20	0.24	0.21	0.24	0.21	0.24	0.22	
	3.2	3.2	3.2	3.1	3.0	3.2	3.0	3.2	3.1	
	0.04	0.12	0.04	0.02	0.04	0.02	0.04	0.03	0.06	
H(2N)O(6)	0.17	0.17	0.17	0.24	0.24	0.24	0.24	0.24	0.24	
	2.8	2.7	2.8	3.1	3.1	3.2	3.2	3.2	3.3	
	0.04	0.12	0.05	0.02	0.02	0.02	0.01	0.03	0.03	

Table S2: $\rho(\mathbf{r})$ characteristics in BCPs (continued)

The following shorthands are used in Table S2:

kap — the same as *shade*, but with $\kappa = 1.16$ and $\kappa' = 1.0$ instead of the default XD2006 values of $\kappa = \kappa' = 1.2$.

	X-ray		B3I	B3LYP		P-D3	MP2		
	shade	isot	kap	mon	dim	mon	dim	mon	dim
O(1)	-0.424	-0.426	-0.398	-0.505	-0.530	-0.505	-0.532	-0.493	-0.517
O(2)	-0.388	-0.389	-0.395	-0.457	-0.459	-0.457	-0.459	-0.443	-0.444
O(3)	-0.376	-0.374	-0.364	-0.471	-0.471	-0.471	-0.471	-0.458	-0.459
O(4)	-0.384	-0.387	-0.379	-0.471	-0.470	-0.471	-0.470	-0.458	-0.457
O(5)	-0.390	-0.392	-0.383	-0.457	-0.457	-0.457	-0.457	-0.443	-0.443
O(6)	-0.431	-0.436	-0.412	-0.505	-0.501	-0.505	-0.501	-0.493	-0.489
N(1)	-1.127	-1.096	-1.232	-1.183	-1.180	-1.185	-1.183	-1.286	-1.283
N(2)	0.342	0.332	0.336	0.435	0.425	0.433	0.422	0.434	0.423
N(4)	0.355	0.350	0.355	0.446	0.446	0.444	0.444	0.437	0.436
N(6)	0.329	0.318	0.322	0.435	0.438	0.433	0.436	0.433	0.435
C (1)	0.526	0.506	0.526	0.589	0.599	0.591	0.602	0.611	0.622
C(2)	0.145	0.140	0.146	0.236	0.242	0.238	0.245	0.225	0.230
C(3)	-0.104	-0.030	-0.156	0.053	0.052	0.053	0.052	0.037	0.037
C(4)	0.339	0.322	0.348	0.249	0.249	0.250	0.251	0.241	0.242
C(5)	-0.094	-0.023	-0.140	0.053	0.053	0.053	0.053	0.037	0.038
C(6)	0.148	0.145	0.144	0.236	0.233	0.238	0.235	0.225	0.222
H(1N)	0.507	0.510	0.543	0.493	0.504	0.494	0.506	0.520	0.531
H(2N)	0.538	0.537	0.577	0.493	0.494	0.494	0.495	0.520	0.521
H(3)	0.248	0.194	0.288	0.166	0.165	0.166	0.165	0.177	0.176
H(5)	0.248	0.208	0.283	0.166	0.167	0.166	0.167	0.177	0.179
Tolal	0.007	0.007	0.007	0.001	0.000	0.001	-0.001	0.001	-0.003

Table S3: Integrated AIM charges of TNA

The following shorthands are used:

shade — anisotropic model was used for hydrogen atoms, ADPs were calculated with SHADE server;

isot — isotropic model with $U_{iso} = 0.03 \text{ Å}^{-1}$ was used for hydrogen atoms;

kap — the same as *shade*, but with $\kappa = 1.16$ and $\kappa' = 1.0$ instead of the default XD2006 values of $\kappa = \kappa' = 1.2$.

Total values given at the bottom indicate the so-called "charge leakage" due to the inaccuracy in determination of atomic bassin boundaries.

	B3LYP	B3LYP-D3	MP2
O(1)	-0.025	-0.027	-0.024
O(2)	-0.002	-0.002	-0.001
O(3)	0.000	0.000	-0.001
O(4)	0.001	0.001	0.001
O(5)	0.000	0.000	0.000
O(6)	0.004	0.004	0.004
N(1)	0.002	0.002	0.002
N(2)	-0.010	-0.010	-0.011
N(4)	-0.001	-0.001	-0.001
N(6)	0.003	0.003	0.002
C(1)	0.010	0.011	0.011
C(2)	0.006	0.007	0.005
C(3)	0.000	-0.001	0.000
C(4)	0.001	0.001	0.001
C(5)	0.000	0.000	0.000
C(6)	-0.003	-0.003	-0.003
H(1N)	0.010	0.012	0.011
H(2N)	0.001	0.001	0.001
H(3)	-0.001	-0.001	-0.001
H(5)	0.001	0.001	0.001

Table S4: The difference of AIM atomic charges in the monomer and the dimer of TNA, data of ab-initio calculations

Values are calculated as $\Delta q = q_{dim} - q_{mon}$, difference higher than 0.01 a.u. are highlighted blue (q is higher in dimer) and red (q is higher in isolated molecule).

	B3LYP	B3LY	/P-D3	MP2
O(1)	-8.68	-11.42	2.16	-12.01
O(2)	0.31	0.56	0.19	1.33
O(3)	0.03	0.05	-0.28	-0.08
O(4)	0.13	0.20	-0.67	0.17
O(5)	-0.34	-0.19	-0.54	-0.34
O(6)	-0.17	-0.09	-1.72	0.18
N(1)	-2.15	-3.26	-3.45	-2.45
N(2)	-5.46	-5.86	-6.32	-5.51
N(4)	-0.23	-0.16	-0.60	-0.43
N(6)	1.60	1.86	1.52	1.41
C(1)	7.39	8.06	9.17	7.58
C(2)	4.54	5.00	4.64	4.36
C(3)	-1.05	-0.75	-1.15	-0.34
C(4)	-0.67	-0.35	-0.90	-0.05
C(5)	-0.52	-0.41	-0.37	-0.39
C(6)	-0.07	-0.05	0.20	-0.03
H(1N)	3.52	3.91	-0.40	3.58
H(2N)	0.11	-0.03	-1.13	0.04
H(3)	-0.32	-0.30	0.07	-0.29
H(5)	0.23	0.29	0.00	0.29

Table S5: The difference of scaled AIM atomic energies (in kcal/mol) in the monomer and the dimer of TNA. Values given with small font for B3LYP-D3 calculation indicate energy variations due to conformational change. Neative values correspond to stabilization in dimer

Energy difference is calculated as from scaled electronic energy, $K_{scaled} = (1 + V/T) \cdot K$, where V/T is a *molecular* virial ratio and K is the value of the kinetic energy integrated over an atomic basin. The use of K_{scaled} is reasonable as the difference of the virial ratio of systems is negligible (see Table S6).

Values given with small font for B3LYP-D3 calculation are obtained from K values of an isolated TNA molecule in dimer geometry. Differencies higher by magnitude than 1.0 kcal/mol are highlited blue (negative, stabilization in dimer) and red (positive, destabilization in dimer).

Table S6: Molecular virial values (V/T) in calculations of TNA

	monomer	dimer	$\Delta \cdot 10^{6}$
B3LYP	-2.0042385826	-2.0042400178	-1.4352
B3LYP-D3	-2.0042438104	-2.0042421022	1.7082
MP2	-2.0003549948	-2.0003554532	-0.4584

Atom 1	Atom 2	\mathbf{R}_{ij} ,	$R_{ij} - \sum v dW_{ij},$	$ ho({f r}),$	$ abla^2 oldsymbol{ ho}(\mathbf{r}),$	E_{cont} ,
		Å	Å	eÅ ⁻³	eÅ ⁻⁵	kcal/mol
O(3)	H(2N)	2.198	-0.522	0.076	1.46	-2.60
O(1)	H(1N)	2.180	-0.540	0.070	1.46	-2.45
O(6)	H(3)	2.417	-0.303	0.057	0.96	-1.67
O(1)	O(1)	2.820	-0.220	0.053	0.98	-1.61
O(4)	H(3)	2.483	-0.237	0.057	0.87	-1.58
O(5)	O(5)	2.864	-0.176	0.052	0.93	-1.54
O(2)	C(4)	2.957	-0.263	0.055	0.87	-1.52
O(5)	N(6)	3.000	-0.070	0.050	0.75	-1.32
O(5)	H(5)	2.418	-0.302	0.039	0.83	-1.23
C(5)	C(6)	3.113	-0.107	0.049	0.65	-1.21
O(3)	O(6)	3.068	0.028	0.036	0.63	-0.96
O(2)	O(3)	3.175	0.135	0.037	0.58	-0.93
N(1)	C(1)	3.348	0.098	0.035	0.45	-0.76
O (1)	C(6)	3.253	0.033	0.034	0.45	-0.75
O(4)	C(2)	3.355	0.135	0.029	0.41	-0.65
O(4)	O(6)	3.241	0.201	0.022	0.39	-0.55
O(3)	H(5)	2.819	0.099	0.022	0.36	-0.51
O(3)	O(5)	3.527	0.487	0.011	0.20	-0.26

Table S7: Symmetry-independent bonding intermolecular contacts in crystal of the TNA

Data correspond to the refinement with ADPs on hydrogen atoms and $\kappa = \kappa' = 1.2$

Only independent contacts (e.g. one from O1...C1A and C1...O1A) are shown.

Intermolecular contacts are sorted by energy calculated with Espinosa-Mollins-Lecomte correlation#1

$$E_{cont} = k \cdot v(\mathbf{r}); \ k = -0.5a_0^3$$

where $v(\mathbf{r})$ is a potential energy density in CP(3,-1) of the contact and a_0 is the Bohr radius. As $v(\mathbf{r})$ is not directly available from multipole refinement data, it is calculated with the so-called gradient expansion^{#2}

$$\nu(\mathbf{r}) = -\frac{3}{5}(3\pi^2)^{\frac{2}{3}}\rho(\mathbf{r})^{\frac{5}{3}} - \frac{1}{36}\frac{[\nabla\rho(\mathbf{r})]^2}{\rho(\mathbf{r})} - \frac{1}{12}\nabla^2\rho(\mathbf{r})$$

- #1 E. Espinosa et al. Chem. Phys. Lett., 1998, 285, 170;
 E. Espinosa et al., Chem. Phys. Lett., 1999, 300, 745
- #2 D. Kirzhnits et al., Sov. Phys. Usp., 1975, 18, 649

Table S8: Atomic coordiantes (Å) of the optimized TNA molecule from B3LYP-D3/def2-TZVP calculation

0	8.0	0.0000000000	2.5973126731	2.4034195416
0	8.0	0.0000000000	-2.5973126731	2.4034195416
0	8.0	0.0000000000	3.5089327079	0.4503379591
0	8.0	0.0000000000	-3.5089327079	0.4503379591
0	8.0	0.0000000000	1.0841056179	-3.5444173625
0	8.0	0.0000000000	-1.0841056179	-3.5444173625
N	7.0	0.0000000000	0.0000000000	2.6452361940
N	7.0	0.0000000000	2.5308198518	1.1724029916
N	7.0	0.0000000000	-2.5308198518	1.1724029916
N	7.0	0.0000000000	0.0000000000	-2.9837796797
С	6.0	0.0000000000	0.0000000000	1.3176495945
С	6.0	0.0000000000	1.2083099481	0.5417007071
С	6.0	0.0000000000	-1.2083099481	0.5417007071
С	6.0	0.0000000000	1.2016478786	-0.8374631173
С	6.0	0.0000000000	-1.2016478786	-0.8374631173
С	6.0	0.0000000000	0.0000000000	-1.5187755257
Н	1.0	0.0000000000	0.8914139798	3.1179818448
Н	1.0	0.0000000000	-0.8914139798	3.1179818448
Н	1.0	0.0000000000	2.1361373456	-1.3755863430
Н	1.0	0.0000000000	-2.1361373456	-1.3755863430

Table S9: Atomic coordiantes (Å) of the optimized TNA dimer from B3LYP-D3/def2-TZVP calculation

0	8.0	0.9829445973	0.9755740939	0.000000000
0	8.0	-0.9829445973	-0.9755740939	0.000000000
0	8.0	2.1770814665	2.7698133069	0.000000000
0	8.0	-2.1770814665	-2.7698133069	0.000000000
0	8.0	6.8468098550	2.7554415800	0.000000000
0	8.0	-6.8468098550	-2.7554415800	0.000000000
0	8.0	7.9672335732	0.8989519053	0.000000000
0	8.0	-7.9672335732	-0.8989519053	0.000000000
0	8.0	5.8119898523	-3.2368470024	0.000000000
0	8.0	-5.8119898523	3.2368470024	0.000000000
0	8.0	3.6708126671	-3.4788913456	0.000000000
0	8.0	-3.6708126671	3.4788913456	0.000000000
Ν	7.0	2.1130180489	-1.3849140395	0.000000000
Ν	7.0	-2.1130180489	1.3849140395	0.0000000000
Ν	7.0	2.0714617862	1.5583085973	0.0000000000
Ν	7.0	-2.0714617862	-1.5583085973	0.0000000000
Ν	7.0	6.9273204586	1.5375113304	0.0000000000
Ν	7.0	-6.9273204586	-1.5375113304	0.0000000000
Ν	7.0	4.6852482198	-2.7799962253	0.0000000000
Ν	7.0	-4.6852482198	2.7799962253	0.0000000000
С	6.0	3.2404283552	-0.6893779135	0.0000000000
С	6.0	-3.2404283552	0.6893779135	0.0000000000
С	6.0	3.2846140084	0.7492672917	0.0000000000
С	6.0	-3.2846140084	-0.7492672917	0.0000000000
С	6.0	4.4709612379	1.4560642952	0.0000000000
С	6.0	-4.4709612379	-1.4560642952	0.0000000000
С	6.0	5.6734772369	0.7805737959	0.0000000000
С	6.0	-5.6734772369	-0.7805737959	0.0000000000
С	6.0	5.7096707207	-0.6016862556	0.0000000000
С	6.0	-5.7096707207	0.6016862556	0.000000000
С	6.0	4.5342770067	-1.3203538862	0.000000000
С	6.0	-4.5342770067	1.3203538862	0.000000000
Н	1.0	1.2226579522	-0.9109963343	0.000000000
Н	1.0	-1.2226579522	0.9109963343	0.000000000
Н	1.0	2.1830225952	-2.3921383707	0.000000000
Н	1.0	-2.1830225952	2.3921383707	0.000000000
Н	1.0	4.4503344367	2.5342391856	0.0000000000
Η	1.0	-4.4503344367	-2.5342391856	0.000000000
Η	1.0	6.6536204996	-1.1232042869	0.000000000
Н	1.0	-6.6536204996	1.1232042869	0.000000000

We have performed a single-point B3LYP-D3/def2-TZVP calculation of the dimer with another configuration (figure Figure S4 below), in which TNA molecules were displaced to prevent the oxygen atom O(1) from H-bonding. The parameters of the O...O interactions (O...O 2.775 Å, -N=O...O 155.3°) were approximately the same as in the dimer discussed in the paper (O...O 2.770 Å, -N=O...O 163.3°). This was made to dismiss all doubts about the bonding nature and the reliability of O...O interaction energy estimated from EML correlation. Only one BCP corresponding to the bonding O...O interaction was found in the intermolecular space. The energy of this interaction from EML correlation is equal to 2.1 kcal/mol (compare with 2.3 kcal/mol in the dimer concerned in the paper); the value calculated from the energy difference between the TNA dimer and two monomers is equal to 1.8 kcal/mol.

Figure S4: Tested confuguration of TNA molecules connected only by O...O bond