Post-synthetic Incorporation of Nickel into CPO-27(Mg) to give Materials with Enhanced Permanent Porosity

Jürgen Kahr, Russell E. Morris and Paul A. Wright*

EaStCHEM School of Chemistry, Purdie Building, North Haugh, St Andrews, Fife, UK KY16 9ST. E-mail: paw2@st-andrews.ac.uk; Fax: +44(0) 1334 463808; Tel: +44(0) 1334 463793

- S1 Reported activation procedures for CPO-27/MOF-74 materials
- S2 Metal salts and acids used in the modification step
- S3 X-ray Photoelectron Spectroscopy (XPS)
- S4 Laboratory Powder X-Ray Diffraction
- S5 Porosity Nitrogen Adsorption (77 K)
- S6 Product Yield vs. Amount of Incorporated Ni
- S7 Structure refinement of CPO-27(Mg) modified with 70 mol% Ni.
- S8 SEM Images of CPO-27(Mg,Ni) after modification steps of different duration
- 89 Repeated Carbon Dioxide Adsorption Measurements (298 K)
- S10 References

S1 Reported activation procedures for CPO-27/MOF-74 materials

	Table S1: Various	activation	procedures	reported in	the literature
--	-------------------	------------	------------	-------------	----------------

Divalent metal	Adsorption		Synthesis	Activation	Pre-adsorption treatment	Ref.
	CO ₂ 298K / 0.1 bar (mmol g ⁻¹)	N ₂ 77K (m ² g ⁻¹ / mmol g ⁻¹)				
Mg	5.68	1542 / 18.2	THF/water	513 K / 48 h, 393 K / 1 h	MeOH exchange (7×7 days)	1
Mg	5.9	1495	DMF/EtOH/ water	523 K / 5 h MeOH exchange (4×2 d), stored under vac or inert gas		2
Mg	5.68		DMF/EtOH/ water	523 K / 6 h MeOH exchange (4 × 2 ď		3
Mg	5.5	/ 16.5	DMF/EtOH/ water	Soaking DMF, MeOH, soak DMF(heating), MeOH exchange (6 × 36 h), 353 K/24h under vac		4
Mg	4.59		DMF/EtOH/ water	hot DMF decanted, immediate MeOH exchange (2×), MeOH exchange (4 × 2 d), dried 303-313 K, 523 K vac 10 h, stored under N_2 atmosphere		5
Ni	4.09	1218 / 13.6	THF/water	473 K/19 h, 383 K / 1 h		1
Ni		1083	THF/water	373 K / 20 h		6
Ni		1242 / 13.6	THF/water	?	?	7
Ni mod	1.1	46.7	THF/water	353 K / 12 h		8
Ni	3.1	921	THF/water	323 K / vac in N ₂ -flow EtOH exchange ($6 \times 8 d$)		9
Ni	3.1	1147	THF/water	523 K / 15 h vac or He		10
Ni	4.09	1070	DMF/EtOH/ Water	$523 \text{ K} / 5 \text{ h} \qquad \qquad \text{MeOH exchange } (4 \times 2 \text{ d}),$ Stored under vac. or inert ga		2
Ni	2.72		THF/water	Hot mother liquor decan MeOH exchanged (4 × 2 dried RT, 523 K vac 5 stored in N ₂ atmos.		5
Со	2.95	1080	DMF/EtOH/ water	523 K / 5 h	MeOH exchange $(4 \times 2 d)$, Stored under vac. or inert gas	2
Со	2.59		DMF/EtOH/ water	Hot mother liquor decanted, MeOH exchanged (4 \times 2 d), dried RT, 523 K vac 5 h, stored under N ₂ atmosphere		5
Zn	1.31	816	DMF/water	543 K Hot mother liquor decanted, rinsed DMF, MeOH exchanged (3 × 6 d)		1

S2 Metal salts and acids used in the modification step

Table S2.1: Amounts of metal salts and acids used for modification, related to magnesium nitrate used in the first step, showing mixture of nickel acetate and nickel chloride

Amounts and Species used in post-modification							
% Ni(OAc) ₂	% NiCl ₂	% Acid	Acid				
10	0	10	Trimesic acid				
10	0	10	H_3PO_3				
10	0	10	cbIm				
10	0	10	сртр				
10	20	10	сртр				
10	40	10	сртр				
10	60	10	сртр				

S3 X-ray Photoelectron Spectroscopy (XPS)

Typical example of XPS spectra of Mg, Ni and P for a modified material, showing spectral fitting.

Figure S3.1 XPS spectra of unmodified (red) and with 10 % nickel and H₃PO₃ modified CPO-27(Mg) (black).

Figure S3.2 XPS spectra of 10 % nickel and H₃PO₃ modified CPO-27(Mg) with applied fitting parameters in Ni 2p_{3/2} region.¹¹

S4 Laboratory Powder X-Ray Diffraction

Figure S4.1 PXRD of unmodified CPO-27 (Mg) and with various amounts of *cpmp* and Ni²⁺(aq) modified material. Powder patterns were collected after activation at 373 K followed by 523 K and adsorption experiments.

Figure S4.2 PXRD of unmodified CPO-27(Mg) and also CPO-27(Mg) modified with 10% nickel acetate and different acids.

S5 Porosity - Nitrogen Adsorption (77 K)

Figure S5.1 (Left) N₂ adsorption (77K) of CPO-27(Mg) and material modified with 10% and 30% of nickel acetate and 10% *cpmp* after samples were activated at 373K followed by 523K. (Right) N₂ adsorption (77K) of CPO-27(Mg) and material modified with 10% and 30% of nickel acetate and 10% *cpmp* where samples have been activated for a second time at 373K followed by 523K.

Figure S6.1 Yield (mg) vs. Ni content (%) observed by EDX analysis of nickel and *cpmp* modified CPO-27(Mg) materials, all with the same starting amounts and conditions in the first synthesis step (see paper for details).

S7 Structure refinement of CPO-27(Mg) modified with 70 mol% Ni

Table \$	S7.1	Structural	Parameters	(Fractional	Atomic	coordinates,	Fractional	Occupancies
	and	Displacem	ent Parame	eters) (R -3,	a = 25.8	87358(13) Å,	c = 6.7991	7(4) Å)

Atom	x	у	Z	Frac.	U_{iso} / Å ²
Mg	0.36114(9)	0.31559(9)	0.02428(24)	0.354(4)	0.007
Ni	0.36114(9)	0.31559(9)	0.02428(24)	0.646(4)	0.007
C(1)	0.4074(4)	0.4203(4)	0.7376(12)	1	0.004(1)
C(2)	0.4570(5)	0.4649(5)	0.8763(15)	1	0.004(1)
C(3)	0.4994(5)	0.5157(5)	0.7946(12)	1	0.004(1)
C(4)	0.4555(4)	0.4456(4)	0.0696(17)	1	0.004(1)
O(1)	0.40614(25)	0.43738(24)	0.5635(8)	1	0.005(1)
O(2)	0.36701(24)	0.36892(23)	0.7989(7)	1	0.005(1)
O(3)	0.58386(23)	0.60751(22)	0.8369(8)	1	0.005(1)

Occupancies of Mg and Ni constrained to sum to 1.

 U_{iso} values of each element type refined as the same value.

S8 SEM Images of CPO-27(Mg,Ni) after modification steps of different duration

Figure S8.1 SEM images of CPO-27(Mg) modified with 70% Ni²⁺ and 10% *cpmp* recorded after different second step reaction times. 1 hour (left), 8 hours (middle), 3 days(right).

Figure S8.2 Elemental maps of CPO-27(Mg) modified with 70% Ni²⁺ and 10% *cpmp* recorded after different second step reaction times. 1 hour (left), 3 days(right). (Mg Ka, red; Ni Ka, green)

Figure S9.1: Repeated CO₂ adsorption (298 K) of CPO-27(Mg) modified with 10% nickel acetate and 10% *cbIm*. The same batch has been activated at 373 K followed by 553 K and measured 3 times. First (green), second (red), third (black).

Figure S9.2: Repeated CO₂ adsorption (298 K) of CPO-27(Mg) modified with 10% nickel acetate and 10% *cblm*. Samples were obtained as described in experimental part from 3 different syntheses and have been activated at 373K followed by 553 K before measurement.

S10 References

- 1. P. D. C. Dietzel, V. Besikiotis and R. Blom, J. Mater. Chem., 2009, 19, 7362-7370.
- 2. S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc., 2008, 130, 10870-10871.
- D. Britt, H. Furukawa, B. Wang, T. G. Glover and O. M. Yaghi, *Proc. Natl. Acad. Sci. U.S.A.*, 2009, 106, 20637.
- 4. J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna and J. R. Long, *Energ. Environ. Sci.*, 2011, **4**, 3030-3040.
- 5. A. C. Kizzie, A. G. Wong-Foy and A. J. Matzger, Langmuir, 2011, 27, 6368-6373.
- P. D. C. Dietzel, B. Panella, M. Hirscher, R. Blom and H. Fjellvag, *Chem. Commun.*, 2006, 959-961.
- S. Chavan, F. Bonino, J. G. Vitillo, E. Groppo, C. Lamberti, P. D. C. Dietzel, A. Zecchina and S. Bordiga, *Phys. Chem. Chem. Phys.*, 2009, **11**, 9811-9822.
- A. Das, P. D. Southon, M. Zhao, C. J. Kepert, A. T. Harris and D. M. D'Alessandro, *Dalton Trans.*, 2012, 41, 11739-11744.
- 9. J. Liu, Y. Wang, A. I. Benin, P. Jakubczak, R. R. Willis and M. D. LeVan, *Langmuir*, 2010, **26**, 14301-14307.
- 10. J. Liu, J. Tian, P. K. Thallapally and B. P. McGrail, J. Phys. Chem. C, 2012, 116, 9575-9581.
- 11. A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart and N. S. McIntyre, *Surf. Sci*, 2006, **600**, 1771-1779.